Suchergebnisse - Deep learning architectures and techniques; Segmentation

  1. 1

    Learning What Not to Segment: A New Perspective on Few-Shot Segmentation von Lang, Chunbo, Cheng, Gong, Tu, Binfei, Han, Junwei

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… Recently few-shot segmentation (FSS) has been extensively developed. Most previous works strive to achieve generalization through the meta-learning framework derived from classification tasks …”
    Volltext
    Tagungsbericht
  2. 2

    Segment, Magnify and Reiterate: Detecting Camouflaged Objects the Hard Way von Jia, Qi, Yao, Shuilian, Liu, Yu, Fan, Xin, Liu, Risheng, Luo, Zhongxuan

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… It is challenging to accurately detect camouflaged objects from their highly similar surroundings. Existing methods mainly leverage a single-stage detection …”
    Volltext
    Tagungsbericht
  3. 3

    PolyWorld: Polygonal Building Extraction with Graph Neural Networks in Satellite Images von Zorzi, Stefano, Bazrafkan, Shabab, Habenschuss, Stefan, Fraundorfer, Friedrich

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… While most state-of-the-art instance segmentation methods produce binary segmentation masks, geographic and cartographic applications typically require precise vector polygons of extracted objects …”
    Volltext
    Tagungsbericht
  4. 4

    Deep orientation-aware functional maps: Tackling symmetry issues in Shape Matching von Donati, Nicolas, Corman, Etienne, Ovsjanikov, Maks

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… Using this representation, we propose a new deep learning approach to learn orientation-aware features in afully unsupervised setting …”
    Volltext
    Tagungsbericht
  5. 5

    BoxeR: Box-Attention for 2D and 3D Transformers von Nguyen, Duy-Kien, Ju, Jihong, Booij, Olaf, Oswald, Martin R., Snoek, Cees G. M.

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… module, making it suitable for end-to-end instance detection and segmentation tasks. By learning invariance to rotation in the box-attention module, BoxeR-3D …”
    Volltext
    Tagungsbericht
  6. 6

    Vox2Cortex: Fast Explicit Reconstruction of Cortical Surfaces from 3D MRI Scans with Geometric Deep Neural Networks von Bongratz, Fabian, Rickmann, Anne-Marie, Polsterl, Sebastian, Wachinger, Christian

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… Although traditional and deep learning-based algorithmic pipelines exist for this purpose, they have two major drawbacks …”
    Volltext
    Tagungsbericht
  7. 7

    Generalizing Interactive Backpropagating Refinement for Dense Prediction Networks von Lin, Fanqing, Price, Brian, Martinez, Tony

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… As deep neural networks become the state-of-the-art approach in the field of computer vision for dense prediction tasks, many methods have been developed for automatic estimation of the target outputs …”
    Volltext
    Tagungsbericht
  8. 8

    TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentation von Zhang, Wenqiang, Huang, Zilong, Luo, Guozhong, Chen, Tao, Wang, Xinggang, Liu, Wenyu, Yu, Gang, Shen, Chunhua

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… Experimental results demonstrate that our method significantly outperforms CNN- and ViT-based networks across several semantic segmentation datasets and achieves a good trade-off between accuracy and latency …”
    Volltext
    Tagungsbericht
  9. 9

    Image Segmentation Using Text and Image Prompts von Luddecke, Timo, Ecker, Alexander

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… Image segmentation is usually addressed by training a model for a fixed set of object classes …”
    Volltext
    Tagungsbericht
  10. 10

    SimT: Handling Open-set Noise for Domain Adaptive Semantic Segmentation von Guo, Xiaoqing, Liu, Jie, Liu, Tongliang, Yuan, Yixuan

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… In this paper, we propose a simplex noise transition matrix (SimT) to model the mixed noise distributions in DA semantic segmentation and formulate the problem as estimation of SimT …”
    Volltext
    Tagungsbericht
  11. 11

    Vision Transformer with Deformable Attention von Xia, Zhuofan, Pan, Xuran, Song, Shiji, Li, Li Erran, Huang, Gao

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… Transformers have recently shown superior performances on various vision tasks. The large, sometimes even global, receptive field endows Transformer models …”
    Volltext
    Tagungsbericht
  12. 12

    Deep Learning Architectures and Techniques for Multi-organ Segmentation von Ogrean, Valentin, Dorobantiu, Alexandru, Brad, Remus

    ISSN: 2158-107X, 2156-5570
    Veröffentlicht: West Yorkshire Science and Information (SAI) Organization Limited 2021
    “… Deep learning architectures used for automatic multi-organ segmentation in the medical field have gained increased attention in the last years as the results and achievements outweighed the older techniques …”
    Volltext
    Journal Article
  13. 13

    Improvements in Forest Segmentation Accuracy Using a New Deep Learning Architecture and Data Augmentation Technique von He, Yan, Jia, Kebin, Wei, Zhihao

    ISSN: 2072-4292, 2072-4292
    Veröffentlicht: Basel MDPI AG 01.05.2023
    Veröffentlicht in Remote sensing (Basel, Switzerland) (01.05.2023)
    “… Accurate monitoring of forest cover is, therefore, essential. Image segmentation networks based on convolutional neural networks have shown significant advantages in remote sensing image analysis with the development of deep learning …”
    Volltext
    Journal Article
  14. 14

    Multi-Scale High-Resolution Vision Transformer for Semantic Segmentation von Gu, Jiaqi, Kwon, Hyoukjun, Wang, Dilin, Ye, Wei, Li, Meng, Chen, Yu-Hsin, Lai, Liangzhen, Chandra, Vikas, Pan, David Z.

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.01.2022
    “… However, ViTs mainly designed for image classification will generate single-scale low-resolution representations, which makes dense prediction tasks such as semantic segmentation challenging for ViTs …”
    Volltext
    Tagungsbericht
  15. 15

    A state-of-the-art technique to perform cloud-based semantic segmentation using deep learning 3D U-Net architecture von Shaukat, Zeeshan, Farooq, Qurat ul Ain, Tu, Shanshan, Xiao, Chuangbai, Ali, Saqib

    ISSN: 1471-2105, 1471-2105
    Veröffentlicht: London BioMed Central 24.06.2022
    Veröffentlicht in BMC bioinformatics (24.06.2022)
    “… Using 3D U-net architecture to perform semantic segmentation on brain tumor dataset is at the core of deep learning …”
    Volltext
    Journal Article
  16. 16

    IRv2-Net: A Deep Learning Framework for Enhanced Polyp Segmentation Performance Integrating InceptionResNetV2 and UNet Architecture with Test Time Augmentation Techniques von Ahamed, Md. Faysal, Syfullah, Md. Khalid, Sarkar, Ovi, Islam, Md. Tohidul, Nahiduzzaman, Md, Islam, Md. Rabiul, Khandakar, Amith, Ayari, Mohamed Arselene, Chowdhury, Muhammad E. H.

    ISSN: 1424-8220, 1424-8220
    Veröffentlicht: Switzerland MDPI AG 01.09.2023
    Veröffentlicht in Sensors (Basel, Switzerland) (01.09.2023)
    “… To solve this problem, an automated diagnostic system based on deep learning algorithms is proposed to find polyps …”
    Volltext
    Journal Article
  17. 17

    Decoupled Multi-task Learning with Cyclical Self-Regulation for Face Parsing von Zheng, Qingping, Deng, Jiankang, Zhu, Zheng, Li, Ying, Zafeiriou, Stefanos

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… ) produced by the existing state-of-the-art method in face parsing. To tackle these problems, we propose a novel Decoupled Multi-task Learning with Cyclical Self-Regulation (DML-CSR) for face parsing …”
    Volltext
    Tagungsbericht
  18. 18

    Class Similarity Weighted Knowledge Distillation for Continual Semantic Segmentation von Phan, Minh Hieu, Ta, The-Anh, Phung, Son Lam, Tran-Thanh, Long, Bouzerdoum, Abdesselam

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… Deep learning models are known to suffer from the problem of catastrophic forgetting when they incrementally learn new classes …”
    Volltext
    Tagungsbericht
  19. 19

    Dense Learning based Semi-Supervised Object Detection von Chen, Binghui, Li, Pengyu, Chen, Xiang, Wang, Biao, Zhang, Lei, Hua, Xian-Sheng

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… applications anchor-free detectors are more demanded. In this paper, we intend to bridge this gap and propose a DenSe Learning (DSL …”
    Volltext
    Tagungsbericht
  20. 20

    PLAD: Learning to Infer Shape Programs with Pseudo-Labels and Approximate Distributions von Jones, R. Kenny, Walke, Homer, Ritchie, Daniel

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… , and more. Training models to perform this task is complicated because paired (shape, program) data is not readily available for many domains, making exact supervised learning infeasible …”
    Volltext
    Tagungsbericht