Suchergebnisse - Deep learning architectures and techniques; Segmentation
-
1
Learning What Not to Segment: A New Perspective on Few-Shot Segmentation
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2022Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“… Recently few-shot segmentation (FSS) has been extensively developed. Most previous works strive to achieve generalization through the meta-learning framework derived from classification tasks …”
Volltext
Tagungsbericht -
2
Segment, Magnify and Reiterate: Detecting Camouflaged Objects the Hard Way
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2022Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“… It is challenging to accurately detect camouflaged objects from their highly similar surroundings. Existing methods mainly leverage a single-stage detection …”
Volltext
Tagungsbericht -
3
PolyWorld: Polygonal Building Extraction with Graph Neural Networks in Satellite Images
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2022Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“… While most state-of-the-art instance segmentation methods produce binary segmentation masks, geographic and cartographic applications typically require precise vector polygons of extracted objects …”
Volltext
Tagungsbericht -
4
Deep orientation-aware functional maps: Tackling symmetry issues in Shape Matching
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2022Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“… Using this representation, we propose a new deep learning approach to learn orientation-aware features in afully unsupervised setting …”
Volltext
Tagungsbericht -
5
BoxeR: Box-Attention for 2D and 3D Transformers
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2022Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“… module, making it suitable for end-to-end instance detection and segmentation tasks. By learning invariance to rotation in the box-attention module, BoxeR-3D …”
Volltext
Tagungsbericht -
6
Vox2Cortex: Fast Explicit Reconstruction of Cortical Surfaces from 3D MRI Scans with Geometric Deep Neural Networks
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2022Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“… Although traditional and deep learning-based algorithmic pipelines exist for this purpose, they have two major drawbacks …”
Volltext
Tagungsbericht -
7
Generalizing Interactive Backpropagating Refinement for Dense Prediction Networks
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2022Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“… As deep neural networks become the state-of-the-art approach in the field of computer vision for dense prediction tasks, many methods have been developed for automatic estimation of the target outputs …”
Volltext
Tagungsbericht -
8
TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentation
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2022Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“… Experimental results demonstrate that our method significantly outperforms CNN- and ViT-based networks across several semantic segmentation datasets and achieves a good trade-off between accuracy and latency …”
Volltext
Tagungsbericht -
9
Image Segmentation Using Text and Image Prompts
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2022Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“… Image segmentation is usually addressed by training a model for a fixed set of object classes …”
Volltext
Tagungsbericht -
10
SimT: Handling Open-set Noise for Domain Adaptive Semantic Segmentation
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2022Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“… In this paper, we propose a simplex noise transition matrix (SimT) to model the mixed noise distributions in DA semantic segmentation and formulate the problem as estimation of SimT …”
Volltext
Tagungsbericht -
11
Vision Transformer with Deformable Attention
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2022Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“… Transformers have recently shown superior performances on various vision tasks. The large, sometimes even global, receptive field endows Transformer models …”
Volltext
Tagungsbericht -
12
Deep Learning Architectures and Techniques for Multi-organ Segmentation
ISSN: 2158-107X, 2156-5570Veröffentlicht: West Yorkshire Science and Information (SAI) Organization Limited 2021Veröffentlicht in International journal of advanced computer science & applications (2021)“… Deep learning architectures used for automatic multi-organ segmentation in the medical field have gained increased attention in the last years as the results and achievements outweighed the older techniques …”
Volltext
Journal Article -
13
Improvements in Forest Segmentation Accuracy Using a New Deep Learning Architecture and Data Augmentation Technique
ISSN: 2072-4292, 2072-4292Veröffentlicht: Basel MDPI AG 01.05.2023Veröffentlicht in Remote sensing (Basel, Switzerland) (01.05.2023)“… Accurate monitoring of forest cover is, therefore, essential. Image segmentation networks based on convolutional neural networks have shown significant advantages in remote sensing image analysis with the development of deep learning …”
Volltext
Journal Article -
14
Multi-Scale High-Resolution Vision Transformer for Semantic Segmentation
ISSN: 1063-6919Veröffentlicht: IEEE 01.01.2022Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.01.2022)“… However, ViTs mainly designed for image classification will generate single-scale low-resolution representations, which makes dense prediction tasks such as semantic segmentation challenging for ViTs …”
Volltext
Tagungsbericht -
15
A state-of-the-art technique to perform cloud-based semantic segmentation using deep learning 3D U-Net architecture
ISSN: 1471-2105, 1471-2105Veröffentlicht: London BioMed Central 24.06.2022Veröffentlicht in BMC bioinformatics (24.06.2022)“… Using 3D U-net architecture to perform semantic segmentation on brain tumor dataset is at the core of deep learning …”
Volltext
Journal Article -
16
IRv2-Net: A Deep Learning Framework for Enhanced Polyp Segmentation Performance Integrating InceptionResNetV2 and UNet Architecture with Test Time Augmentation Techniques
ISSN: 1424-8220, 1424-8220Veröffentlicht: Switzerland MDPI AG 01.09.2023Veröffentlicht in Sensors (Basel, Switzerland) (01.09.2023)“… To solve this problem, an automated diagnostic system based on deep learning algorithms is proposed to find polyps …”
Volltext
Journal Article -
17
Decoupled Multi-task Learning with Cyclical Self-Regulation for Face Parsing
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2022Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“… ) produced by the existing state-of-the-art method in face parsing. To tackle these problems, we propose a novel Decoupled Multi-task Learning with Cyclical Self-Regulation (DML-CSR) for face parsing …”
Volltext
Tagungsbericht -
18
Class Similarity Weighted Knowledge Distillation for Continual Semantic Segmentation
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2022Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“… Deep learning models are known to suffer from the problem of catastrophic forgetting when they incrementally learn new classes …”
Volltext
Tagungsbericht -
19
Dense Learning based Semi-Supervised Object Detection
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2022Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“… applications anchor-free detectors are more demanded. In this paper, we intend to bridge this gap and propose a DenSe Learning (DSL …”
Volltext
Tagungsbericht -
20
PLAD: Learning to Infer Shape Programs with Pseudo-Labels and Approximate Distributions
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2022Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“… , and more. Training models to perform this task is complicated because paired (shape, program) data is not readily available for many domains, making exact supervised learning infeasible …”
Volltext
Tagungsbericht