Výsledky vyhledávání - Deep learning architectures and techniques; Recognition: detection
-
1
Equalized Focal Loss for Dense Long-Tailed Object Detection
ISSN: 1063-6919Vydáno: IEEE 01.06.2022Vydáno v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“…Despite the recent success of long-tailed object detection, almost all long-tailed object detectors are developed based on the two-stage paradigm…”
Získat plný text
Konferenční příspěvek -
2
Sylph: A Hypernetwork Framework for Incremental Few-shot Object Detection
ISSN: 1063-6919Vydáno: IEEE 01.06.2022Vydáno v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“…We study the challenging incremental few-shot object de-tection (iFSD) setting. Recently, hypernetwork-based approaches have been studied in the context of…”
Získat plný text
Konferenční příspěvek -
3
A ConvNet for the 2020s
ISSN: 1063-6919Vydáno: IEEE 01.06.2022Vydáno v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“…The "Roaring 20s" of visual recognition began with the introduction of Vision Transformers (ViTs…”
Získat plný text
Konferenční příspěvek -
4
Grounded Language-Image Pre-training
ISSN: 1063-6919Vydáno: IEEE 01.06.2022Vydáno v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“…This paper presents a grounded language-image pretraining (GLIP) model for learning object-level, language-aware, and semantic-rich visual representations…”
Získat plný text
Konferenční příspěvek -
5
CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows
ISSN: 1063-6919Vydáno: IEEE 01.06.2022Vydáno v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“…We present CSWin Transformer, an efficient and effective Transformer-based backbone for general-purpose vision tasks. A challenging issue in Transformer design…”
Získat plný text
Konferenční příspěvek -
6
MetaFormer is Actually What You Need for Vision
ISSN: 1063-6919Vydáno: IEEE 01.01.2022Vydáno v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.01.2022)“… Based on this observation, we hypothesize that the general architecture of the transformers, instead of the specific token mixer module, is more essential to the model's performance…”
Získat plný text
Konferenční příspěvek -
7
beta-DARTS: Beta-Decay Regularization for Differentiable Architecture Search
ISSN: 1063-6919Vydáno: IEEE 01.06.2022Vydáno v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“…Neural Architecture Search (NAS) has attracted increasingly more attention in recent years because of its capability to design deep neural network automatically…”
Získat plný text
Konferenční příspěvek -
8
SLIC: Self-Supervised Learning with Iterative Clustering for Human Action Videos
ISSN: 1063-6919Vydáno: IEEE 01.06.2022Vydáno v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“…Self-supervised methods have significantly closed the gap with end-to-end supervised learning for image classification [13], [24…”
Získat plný text
Konferenční příspěvek -
9
Revisiting Weakly Supervised Pre-Training of Visual Perception Models
ISSN: 1063-6919Vydáno: IEEE 01.06.2022Vydáno v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“…Model pre-training is a cornerstone of modern visual recognition systems. Although fully supervised pre-training on datasets like ImageNet is still the de-facto…”
Získat plný text
Konferenční příspěvek -
10
Multimodal Token Fusion for Vision Transformers
ISSN: 1063-6919Vydáno: IEEE 01.06.2022Vydáno v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“…Many adaptations of transformers have emerged to address the single-modal vision tasks, where self-attention modules are stacked to handle input sources like…”
Získat plný text
Konferenční příspěvek -
11
Knowledge Distillation via the Target-aware Transformer
ISSN: 1063-6919Vydáno: IEEE 01.06.2022Vydáno v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“… However, people tend to overlook the fact that, due to the architecture differences, the semantic information on the same spatial location usually vary…”
Získat plný text
Konferenční příspěvek -
12
Single-Domain Generalized Object Detection in Urban Scene via Cyclic-Disentangled Self-Distillation
ISSN: 1063-6919Vydáno: IEEE 01.06.2022Vydáno v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“… And we consider a realistic yet challenging scenario, namely Single-Domain Generalized Object Detection (Single-DGOD…”
Získat plný text
Konferenční příspěvek -
13
TransMix: Attend to Mix for Vision Transformers
ISSN: 1063-6919Vydáno: IEEE 01.06.2022Vydáno v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“…Mixup-based augmentation has been found to be effective for generalizing models during training, especially for Vision Transformers (ViTs) since they can…”
Získat plný text
Konferenční příspěvek -
14
Unbiased Teacher v2: Semi-supervised Object Detection for Anchor-free and Anchor-based Detectors
ISSN: 1063-6919Vydáno: IEEE 01.06.2022Vydáno v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“…With the recent development of Semi-Supervised Object Detection (SS-OD) techniques, object detectors can be improved by using a limited amount of labeled data and abundant unlabeled data…”
Získat plný text
Konferenční příspěvek -
15
MiniViT: Compressing Vision Transformers with Weight Multiplexing
ISSN: 1063-6919Vydáno: IEEE 01.06.2022Vydáno v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“…Vision Transformer (ViT) models have recently drawn much attention in computer vision due to their high model capability. However, ViT models suffer from huge…”
Získat plný text
Konferenční příspěvek -
16
TableFormer: Table Structure Understanding with Transformers
ISSN: 1063-6919Vydáno: IEEE 01.06.2022Vydáno v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“… In this paper, we present a new table-structure identification model. The latter improves the latest end-to-end deep learning model (i.e…”
Získat plný text
Konferenční příspěvek -
17
VISTA: Boosting 3D Object Detection via Dual Cross-VIew SpaTial Attention
ISSN: 1063-6919Vydáno: IEEE 01.06.2022Vydáno v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“…Detecting objects from LiDAR point clouds is of tremendous significance in autonomous driving…”
Získat plný text
Konferenční příspěvek -
18
Human-Object Interaction Detection via Disentangled Transformer
ISSN: 1063-6919Vydáno: IEEE 01.06.2022Vydáno v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“…Human-Object Interaction Detection tackles the problem of joint localization and classification of human object interactions…”
Získat plný text
Konferenční příspěvek -
19
Progressive End-to-End Object Detection in Crowded Scenes
ISSN: 1063-6919Vydáno: IEEE 01.06.2022Vydáno v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“…In this paper, we propose a new query-based detection framework for crowd detection…”
Získat plný text
Konferenční příspěvek -
20
DTA: Physical Camouflage Attacks using Differentiable Transformation Network
ISSN: 1063-6919Vydáno: IEEE 01.06.2022Vydáno v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“… In this paper, we propose the Differentiable Transformation Attack (DTA), a framework for generating a robust physical adversarial pattern on a target object to camouflage it against object detection models with a wide range of transformations…”
Získat plný text
Konferenční příspěvek