Suchergebnisse - Deep convolutional autoencoder Finite element Nonlinear problem
Andere Suchmöglichkeiten:
- Deep convolutional autoencoder Finite element Nonlinear problem »
-
1
Non-intrusive reduced order modeling of natural convection in porous media using convolutional autoencoders: Comparison with linear subspace techniques
ISSN: 0309-1708, 1872-9657Veröffentlicht: United States Elsevier Ltd 01.02.2022Veröffentlicht in Advances in water resources (01.02.2022)“… Natural convection in porous media is a highly nonlinear multiphysical problem relevant to many engineering applications (e.g …”
Volltext
Journal Article -
2
Dimensionality reduction through convolutional autoencoders for fracture patterns prediction
ISSN: 0307-904X, 1872-8480Veröffentlicht: Elsevier Inc 01.02.2023Veröffentlicht in Applied mathematical modelling (01.02.2023)“… •Dimensionality reduction using a convolutional neural network autoencoder.•Application to highly nonlinear brittle fracture mechanics problems …”
Volltext
Journal Article -
3
Non-intrusive surrogate modeling for parametrized time-dependent partial differential equations using convolutional autoencoders
ISSN: 0952-1976, 1873-6769Veröffentlicht: Elsevier Ltd 01.03.2022Veröffentlicht in Engineering applications of artificial intelligence (01.03.2022)“… from the problem’s parametric space to its solution space. For this purpose, training data are collected by solving the high-fidelity model via finite elements for a reduced set of parameter values …”
Volltext
Journal Article -
4
Reduced-order modeling for stochastic large-scale and time-dependent flow problems using deep spatial and temporal convolutional autoencoders
ISSN: 2213-7467, 2213-7467Veröffentlicht: Cham Springer International Publishing 19.05.2023Veröffentlicht in Advanced modeling and simulation in engineering sciences (19.05.2023)“… A non-intrusive reduced-order model based on convolutional autoencoders is proposed as a data-driven tool to build an efficient nonlinear reduced-order model for stochastic spatiotemporal large-scale flow problems …”
Volltext
Journal Article -
5
An Efficient Acoustic Metamaterial Design Approach Integrating Attention Mechanisms and Autoencoder Networks
ISSN: 2073-4352, 2073-4352Veröffentlicht: Basel MDPI AG 01.06.2025Veröffentlicht in Crystals (Basel) (01.06.2025)“… However, there exists a highly nonlinear mapping relationship between their structural parameters and performance responses, which causes traditional design methods to face the problems …”
Volltext
Journal Article -
6
Reduced-order modeling for stochastic large-scale and time-dependent problems using deep spatial and temporal convolutional autoencoders
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 05.08.2022Veröffentlicht in arXiv.org (05.08.2022)“… A non-intrusive reduced order model based on convolutional autoencoders (NIROM-CAEs) is proposed as a data-driven tool to build an efficient nonlinear reduced-order model for stochastic spatio-temporal large-scale physical problems …”
Volltext
Paper -
7
Non-intrusive reduced order modeling of natural convection in porous media using convolutional autoencoders: comparison with linear subspace techniques
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 29.07.2021Veröffentlicht in arXiv.org (29.07.2021)“… ). Here, we present a non-intrusive reduced order model of natural convection in porous media employing deep convolutional autoencoders for the compression and reconstruction and either radial basis function (RBF …”
Volltext
Paper -
8
Reduced order modeling for flow and transport problems with Barlow Twins self-supervised learning
ISSN: 2045-2322, 2045-2322Veröffentlicht: London Nature Publishing Group UK 30.11.2022Veröffentlicht in Scientific reports (30.11.2022)“… ) using deep-convolutional autoencoders (DC–AE) has been shown to capture nonlinear solution manifolds but fails to perform adequately when linear subspace approaches such as proper orthogonal decomposition (POD) would be optimal …”
Volltext
Journal Article -
9
Reduced order modeling for flow and transport problems with Barlow Twins self-supervised learning
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 22.03.2022Veröffentlicht in arXiv.org (22.03.2022)“… ) using deep-convolutional autoencoders (DC-AE) has been shown to capture nonlinear solution manifolds but fails to perform adequately when linear subspace approaches such as proper orthogonal decomposition (POD) would be optimal …”
Volltext
Paper -
10
A novel end-to-end deep learning model for predicting the full stress field of tensioned membrane structures
ISSN: 1226-7988, 1976-3808Veröffentlicht: 대한토목학회 01.04.2025Veröffentlicht in KSCE Journal of Civil Engineering (01.04.2025)“… A deep learning model consisting of two essential modules was presented. The stress encoding-decoding module employs convolutional autoencoders (CAE …”
Volltext
Journal Article -
11
Assessment of unsteady flow predictions using hybrid deep learning based reduced order models
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 22.09.2020Veröffentlicht in arXiv.org (22.09.2020)“… The first model projects the high-fidelity time series data from a finite element Navier-Stokes solver to a low-dimensional subspace via proper orthogonal decomposition (POD …”
Volltext
Paper