Suchergebnisse - Deep convolutional autoencoder Finite element Nonlinear problem

Andere Suchmöglichkeiten:

  • Treffer 1 - 11 von 11
Treffer weiter einschränken
  1. 1

    Non-intrusive reduced order modeling of natural convection in porous media using convolutional autoencoders: Comparison with linear subspace techniques von Kadeethum, T., Ballarin, F., Choi, Y., O’Malley, D., Yoon, H., Bouklas, N.

    ISSN: 0309-1708, 1872-9657
    Veröffentlicht: United States Elsevier Ltd 01.02.2022
    Veröffentlicht in Advances in water resources (01.02.2022)
    “… Natural convection in porous media is a highly nonlinear multiphysical problem relevant to many engineering applications (e.g …”
    Volltext
    Journal Article
  2. 2

    Dimensionality reduction through convolutional autoencoders for fracture patterns prediction von Shinde, Krushna, Itier, Vincent, Mennesson, José, Vasiukov, Dmytro, Shakoor, Modesar

    ISSN: 0307-904X, 1872-8480
    Veröffentlicht: Elsevier Inc 01.02.2023
    Veröffentlicht in Applied mathematical modelling (01.02.2023)
    “… •Dimensionality reduction using a convolutional neural network autoencoder.•Application to highly nonlinear brittle fracture mechanics problems …”
    Volltext
    Journal Article
  3. 3

    Non-intrusive surrogate modeling for parametrized time-dependent partial differential equations using convolutional autoencoders von Nikolopoulos, Stefanos, Kalogeris, Ioannis, Papadopoulos, Vissarion

    ISSN: 0952-1976, 1873-6769
    Veröffentlicht: Elsevier Ltd 01.03.2022
    Veröffentlicht in Engineering applications of artificial intelligence (01.03.2022)
    “… from the problem’s parametric space to its solution space. For this purpose, training data are collected by solving the high-fidelity model via finite elements for a reduced set of parameter values …”
    Volltext
    Journal Article
  4. 4

    Reduced-order modeling for stochastic large-scale and time-dependent flow problems using deep spatial and temporal convolutional autoencoders von Abdedou, Azzedine, Soulaimani, Azzeddine

    ISSN: 2213-7467, 2213-7467
    Veröffentlicht: Cham Springer International Publishing 19.05.2023
    “… A non-intrusive reduced-order model based on convolutional autoencoders is proposed as a data-driven tool to build an efficient nonlinear reduced-order model for stochastic spatiotemporal large-scale flow problems …”
    Volltext
    Journal Article
  5. 5

    An Efficient Acoustic Metamaterial Design Approach Integrating Attention Mechanisms and Autoencoder Networks von Chu, Yangyang, Liu, Yiping, Wang, Bingke, Zhang, Zhifeng

    ISSN: 2073-4352, 2073-4352
    Veröffentlicht: Basel MDPI AG 01.06.2025
    Veröffentlicht in Crystals (Basel) (01.06.2025)
    “… However, there exists a highly nonlinear mapping relationship between their structural parameters and performance responses, which causes traditional design methods to face the problems …”
    Volltext
    Journal Article
  6. 6

    Reduced-order modeling for stochastic large-scale and time-dependent problems using deep spatial and temporal convolutional autoencoders von Abdedou, Azzedine, Soulaïmani, Azzeddine

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 05.08.2022
    Veröffentlicht in arXiv.org (05.08.2022)
    “… A non-intrusive reduced order model based on convolutional autoencoders (NIROM-CAEs) is proposed as a data-driven tool to build an efficient nonlinear reduced-order model for stochastic spatio-temporal large-scale physical problems …”
    Volltext
    Paper
  7. 7

    Non-intrusive reduced order modeling of natural convection in porous media using convolutional autoencoders: comparison with linear subspace techniques von Kadeethum, T, Ballarin, F, Choi, Y, O'Malley, D, Yoon, H, Bouklas, N

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 29.07.2021
    Veröffentlicht in arXiv.org (29.07.2021)
    “… ). Here, we present a non-intrusive reduced order model of natural convection in porous media employing deep convolutional autoencoders for the compression and reconstruction and either radial basis function (RBF …”
    Volltext
    Paper
  8. 8

    Reduced order modeling for flow and transport problems with Barlow Twins self-supervised learning von Kadeethum, Teeratorn, Ballarin, Francesco, O’Malley, Daniel, Choi, Youngsoo, Bouklas, Nikolaos, Yoon, Hongkyu

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 30.11.2022
    Veröffentlicht in Scientific reports (30.11.2022)
    “… ) using deep-convolutional autoencoders (DC–AE) has been shown to capture nonlinear solution manifolds but fails to perform adequately when linear subspace approaches such as proper orthogonal decomposition (POD) would be optimal …”
    Volltext
    Journal Article
  9. 9

    Reduced order modeling for flow and transport problems with Barlow Twins self-supervised learning von Kadeethum, Teeratorn, Ballarin, Francesco, O'Malley, Daniel, Choi, Youngsoo, Bouklas, Nikolaos, Yoon, Hongkyu

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 22.03.2022
    Veröffentlicht in arXiv.org (22.03.2022)
    “… ) using deep-convolutional autoencoders (DC-AE) has been shown to capture nonlinear solution manifolds but fails to perform adequately when linear subspace approaches such as proper orthogonal decomposition (POD) would be optimal …”
    Volltext
    Paper
  10. 10

    A novel end-to-end deep learning model for predicting the full stress field of tensioned membrane structures von Xu, Junhao, Sheng, LingYu, Zhang, Yingying, Fei, Shuhuan, Zhao, Ziang

    ISSN: 1226-7988, 1976-3808
    Veröffentlicht: 대한토목학회 01.04.2025
    Veröffentlicht in KSCE Journal of Civil Engineering (01.04.2025)
    “… A deep learning model consisting of two essential modules was presented. The stress encoding-decoding module employs convolutional autoencoders (CAE …”
    Volltext
    Journal Article
  11. 11

    Assessment of unsteady flow predictions using hybrid deep learning based reduced order models von Sandeep Reddy Bukka, Gupta, Rachit, Allan Ross Magee, Jaiman, Rajeev Kumar

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 22.09.2020
    Veröffentlicht in arXiv.org (22.09.2020)
    “… The first model projects the high-fidelity time series data from a finite element Navier-Stokes solver to a low-dimensional subspace via proper orthogonal decomposition (POD …”
    Volltext
    Paper