Suchergebnisse - Deep autoencoder-based clustering
-
1
Deep Convolutional Asymmetric Autoencoder-Based Spatial-Spectral Clustering Network for Hyperspectral Image
ISSN: 1530-8669, 1530-8677Veröffentlicht: Oxford Hindawi 2022Veröffentlicht in Wireless communications and mobile computing (2022)“… In this paper, we propose a novel deep convolutional asymmetric autoencoder-based spatial-spectral clustering network (DCAAES2C-Net …”
Volltext
Journal Article -
2
Matrix Factorization and Deep Autoencoder based Clustering Scheme for Large-scale UAV Networks
ISSN: 2577-2465Veröffentlicht: IEEE 01.06.2023Veröffentlicht in IEEE Vehicular Technology Conference (01.06.2023)“… Typically, clustering is widely adopted to reduce the degradation of network performance in large-scale UAV networks …”
Volltext
Tagungsbericht -
3
An autoencoder-based deep learning approach for clustering time series data
ISSN: 2523-3963, 2523-3971Veröffentlicht: Cham Springer International Publishing 01.05.2020Veröffentlicht in SN applied sciences (01.05.2020)“… Second, an autoencoder-based deep learning model is built to model both known and hidden non-linear features of time series data …”
Volltext
Journal Article -
4
DAC: Deep Autoencoder-based Clustering, a General Deep Learning Framework of Representation Learning
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 15.02.2021Veröffentlicht in arXiv.org (15.02.2021)“… When those assumptions does not hold, these algorithms then might not work. In this paper, we propose DAC, Deep Autoencoder-based Clustering, a generalized data-driven framework to learn clustering representations using deep neuron networks …”
Volltext
Paper -
5
Operationalization of the construct “Business model of a Bank”: clustering analyses with deep neural networks
ISSN: 1750-2071, 1745-6452, 1750-2071Veröffentlicht: London Palgrave Macmillan 01.09.2025Veröffentlicht in Journal of banking regulation (01.09.2025)“… This paper presents a framework to operationalize the multidimensional construct of a bank's business model (BBM). We conceptualize the construct from a …”
Volltext
Journal Article -
6
A Robust PCA Feature Selection To Assist Deep Clustering Autoencoder-Based Network Anomaly Detection
Veröffentlicht: IEEE 21.12.2021Veröffentlicht in 2021 8th NAFOSTED Conference on Information and Computer Science (NICS) (21.12.2021)“… This paper presents a novel method to enhance the performance of Clustering-based Autoencoder models for network anomaly detection …”
Volltext
Tagungsbericht -
7
Antenna Scanning Type Classification with Autoencoder Based Deep Clustering
Veröffentlicht: IEEE 09.06.2021Veröffentlicht in 2021 29th Signal Processing and Communications Applications Conference (SIU) (09.06.2021)“… In this study, a deep learning-based algorithm is proposed for automatic detection of antenna scanning types used in EW systems …”
Volltext
Tagungsbericht -
8
A Novel Autoencoder based Federated Deep Transfer Learning and Weighted k-Subspace Network clustering for Intelligent Intrusion Detection for the Internet of Things
ISSN: 2953-4860Veröffentlicht: 2024Veröffentlicht in Salud, Ciencia y Tecnología - Serie de Conferencias (2024)“… In this research, suggest an Autoencoder based Deep Federated Transfer Learning (ADFTL) to conquer these obstacles …”
Volltext
Journal Article -
9
Brain tumor classification using a hybrid deep autoencoder with Bayesian fuzzy clustering-based segmentation approach
ISSN: 0208-5216Veröffentlicht: Elsevier B.V 01.01.2020Veröffentlicht in Biocybernetics and biomedical engineering (01.01.2020)“… This paper developed a brain tumor classification using a hybrid deep autoencoder with a Bayesian fuzzy clustering-based segmentation approach …”
Volltext
Journal Article -
10
Leveraging tensor kernels to reduce objective function mismatch in deep clustering
ISSN: 0031-3203, 1873-5142Veröffentlicht: Elsevier Ltd 01.05.2024Veröffentlicht in Pattern recognition (01.05.2024)“… In this work we study OFM in deep clustering, and find that the popular autoencoder-based approach to deep clustering can lead to both reduced clustering performance, and a significant amount of OFM …”
Volltext
Journal Article -
11
Clustering Time Series Data through Autoencoder-based Deep Learning Models
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 11.04.2020Veröffentlicht in arXiv.org (11.04.2020)“… ). In particular, deep learning techniques are capable of capturing and learning hidden features in a given data sets and thus building a more accurate prediction model for clustering and labeling problem …”
Volltext
Paper -
12
scTPC: a novel semisupervised deep clustering model for scRNA-seq data
ISSN: 1367-4811, 1367-4803, 1367-4811Veröffentlicht: England Oxford University Press 02.05.2024Veröffentlicht in Bioinformatics (Oxford, England) (02.05.2024)“… Results This study investigates a semisupervised clustering model called scTPC, which integrates the triplet constraint, pairwise constraint, and cross-entropy constraint based on deep learning …”
Volltext
Journal Article -
13
Unsupervised Seismic Facies Deep Clustering Via Lognormal Mixture-Based Variational Autoencoder
ISSN: 1939-1404, 2151-1535Veröffentlicht: Piscataway IEEE 2023Veröffentlicht in IEEE journal of selected topics in applied earth observations and remote sensing (2023)“… The dominant isolated learning-based SFA schemes have gained considerable attention and primarily focus on learning the best representation of prestack data and generating facies maps by clustering …”
Volltext
Journal Article -
14
Autoencoder-based unsupervised clustering and hashing
ISSN: 0924-669X, 1573-7497Veröffentlicht: New York Springer US 01.01.2021Veröffentlicht in Applied intelligence (Dordrecht, Netherlands) (01.01.2021)“… Faced with a large amount of data and high-dimensional data information in a database, the existing exact nearest neighbor retrieval methods cannot obtain …”
Volltext
Journal Article -
15
A Convolutional Autoencoder-based Explainable Clustering Approach for Resting-State EEG Analysis
ISSN: 2694-0604, 2694-0604Veröffentlicht: United States IEEE 01.01.2023Veröffentlicht in 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (01.01.2023)“… learning-based approaches with automated feature learning to cluster EEG. Those studies involve separately training an autoencoder and then performing clustering …”
Volltext
Tagungsbericht Journal Article -
16
A New Graph Autoencoder-Based Multi-Level Kernel Subspace Fusion Framework for Single-Cell Type Identification
ISSN: 1545-5963, 1557-9964, 1557-9964Veröffentlicht: United States IEEE 01.11.2024Veröffentlicht in IEEE/ACM transactions on computational biology and bioinformatics (01.11.2024)“… Although many single-cell clustering methods have been developed recently, few can fully exploit the deep potential relationships between cells, resulting in suboptimal clustering …”
Volltext
Journal Article -
17
Achieving deep clustering through the use of variational autoencoders and similarity-based loss
ISSN: 1551-0018, 1551-0018Veröffentlicht: AIMS Press 01.01.2022Veröffentlicht in Mathematical biosciences and engineering : MBE (01.01.2022)“… In this work, a novel variational autoencoder-based deep clustering algorithm is proposed. It treats the Gaussian mixture model as the prior latent space and uses …”
Volltext
Journal Article -
18
Interpretable unsupervised learning enables accurate clustering with high-throughput imaging flow cytometry
ISSN: 2045-2322, 2045-2322Veröffentlicht: London Nature Publishing Group UK 23.11.2023Veröffentlicht in Scientific reports (23.11.2023)“… We present an unsupervised deep embedding algorithm, the Deep Convolutional Autoencoder-based Clustering (DCAEC …”
Volltext
Journal Article -
19
Patient Clustering for Vital Organ Failure Using ICD Code With Graph Attention
ISSN: 0018-9294, 1558-2531, 1558-2531Veröffentlicht: United States IEEE 01.08.2023Veröffentlicht in IEEE transactions on biomedical engineering (01.08.2023)“… We employ an autoencoder-based deep clustering architecture jointly trained with a K-means loss, and a non-linear dimension reduction is performed to obtain patient clusters on the MIMIC-III dataset. Results …”
Volltext
Journal Article -
20
scCompressSA: dual-channel self-attention based deep autoencoder model for single-cell clustering by compressing gene–gene interactions
ISSN: 1471-2164, 1471-2164Veröffentlicht: London BioMed Central 29.04.2024Veröffentlicht in BMC genomics (29.04.2024)“… Background Single-cell clustering has played an important role in exploring the molecular mechanisms about cell differentiation and human diseases …”
Volltext
Journal Article