Suchergebnisse - Deep autoencoder-based clustering

  1. 1

    Deep Convolutional Asymmetric Autoencoder-Based Spatial-Spectral Clustering Network for Hyperspectral Image von Liu, Baisen, Kong, Weili, Wang, Yan

    ISSN: 1530-8669, 1530-8677
    Veröffentlicht: Oxford Hindawi 2022
    “… In this paper, we propose a novel deep convolutional asymmetric autoencoder-based spatial-spectral clustering network (DCAAES2C-Net …”
    Volltext
    Journal Article
  2. 2

    Matrix Factorization and Deep Autoencoder based Clustering Scheme for Large-scale UAV Networks von Fang, Jiaolan, Wang, Chan, Li, Rongpeng, Wei, Hanyu, Zhao, Minjian

    ISSN: 2577-2465
    Veröffentlicht: IEEE 01.06.2023
    Veröffentlicht in IEEE Vehicular Technology Conference (01.06.2023)
    “… Typically, clustering is widely adopted to reduce the degradation of network performance in large-scale UAV networks …”
    Volltext
    Tagungsbericht
  3. 3

    An autoencoder-based deep learning approach for clustering time series data von Tavakoli, Neda, Siami-Namini, Sima, Adl Khanghah, Mahdi, Mirza Soltani, Fahimeh, Siami Namin, Akbar

    ISSN: 2523-3963, 2523-3971
    Veröffentlicht: Cham Springer International Publishing 01.05.2020
    Veröffentlicht in SN applied sciences (01.05.2020)
    “… Second, an autoencoder-based deep learning model is built to model both known and hidden non-linear features of time series data …”
    Volltext
    Journal Article
  4. 4

    DAC: Deep Autoencoder-based Clustering, a General Deep Learning Framework of Representation Learning von Lu, Si, Li, Ruisi

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 15.02.2021
    Veröffentlicht in arXiv.org (15.02.2021)
    “… When those assumptions does not hold, these algorithms then might not work. In this paper, we propose DAC, Deep Autoencoder-based Clustering, a generalized data-driven framework to learn clustering representations using deep neuron networks …”
    Volltext
    Paper
  5. 5

    Operationalization of the construct “Business model of a Bank”: clustering analyses with deep neural networks von Herdt, Manfred, Schulte-Mattler, Hermann

    ISSN: 1750-2071, 1745-6452, 1750-2071
    Veröffentlicht: London Palgrave Macmillan 01.09.2025
    Veröffentlicht in Journal of banking regulation (01.09.2025)
    “… This paper presents a framework to operationalize the multidimensional construct of a bank's business model (BBM). We conceptualize the construct from a …”
    Volltext
    Journal Article
  6. 6

    A Robust PCA Feature Selection To Assist Deep Clustering Autoencoder-Based Network Anomaly Detection von Nguyen, Van Quan, Nguyen, Viet Hung, Cao, Van Loi, Khac, Nhien - An Le, Shone, Nathan

    Veröffentlicht: IEEE 21.12.2021
    “… This paper presents a novel method to enhance the performance of Clustering-based Autoencoder models for network anomaly detection …”
    Volltext
    Tagungsbericht
  7. 7

    Antenna Scanning Type Classification with Autoencoder Based Deep Clustering von Ozmen, Emirhan, Ozkazanc, Yakup

    Veröffentlicht: IEEE 09.06.2021
    “… In this study, a deep learning-based algorithm is proposed for automatic detection of antenna scanning types used in EW systems …”
    Volltext
    Tagungsbericht
  8. 8

    A Novel Autoencoder based Federated Deep Transfer Learning and Weighted k-Subspace Network clustering for Intelligent Intrusion Detection for the Internet of Things von Lavanya, V. S., Anushiya, R.

    ISSN: 2953-4860
    Veröffentlicht: 2024
    “… In this research, suggest an Autoencoder based Deep Federated Transfer Learning (ADFTL) to conquer these obstacles …”
    Volltext
    Journal Article
  9. 9

    Brain tumor classification using a hybrid deep autoencoder with Bayesian fuzzy clustering-based segmentation approach von Siva Raja, P.M., rani, Antony Viswasa

    ISSN: 0208-5216
    Veröffentlicht: Elsevier B.V 01.01.2020
    Veröffentlicht in Biocybernetics and biomedical engineering (01.01.2020)
    “… This paper developed a brain tumor classification using a hybrid deep autoencoder with a Bayesian fuzzy clustering-based segmentation approach …”
    Volltext
    Journal Article
  10. 10

    Leveraging tensor kernels to reduce objective function mismatch in deep clustering von Trosten, Daniel J., Løkse, Sigurd, Jenssen, Robert, Kampffmeyer, Michael

    ISSN: 0031-3203, 1873-5142
    Veröffentlicht: Elsevier Ltd 01.05.2024
    Veröffentlicht in Pattern recognition (01.05.2024)
    “… In this work we study OFM in deep clustering, and find that the popular autoencoder-based approach to deep clustering can lead to both reduced clustering performance, and a significant amount of OFM …”
    Volltext
    Journal Article
  11. 11

    Clustering Time Series Data through Autoencoder-based Deep Learning Models von Tavakoli, Neda, Siami-Namini, Sima, Mahdi Adl Khanghah, Fahimeh Mirza Soltani, Namin, Akbar Siami

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 11.04.2020
    Veröffentlicht in arXiv.org (11.04.2020)
    “… ). In particular, deep learning techniques are capable of capturing and learning hidden features in a given data sets and thus building a more accurate prediction model for clustering and labeling problem …”
    Volltext
    Paper
  12. 12

    scTPC: a novel semisupervised deep clustering model for scRNA-seq data von Qiu, Yushan, Yang, Lingfei, Jiang, Hao, Zou, Quan

    ISSN: 1367-4811, 1367-4803, 1367-4811
    Veröffentlicht: England Oxford University Press 02.05.2024
    Veröffentlicht in Bioinformatics (Oxford, England) (02.05.2024)
    “… Results This study investigates a semisupervised clustering model called scTPC, which integrates the triplet constraint, pairwise constraint, and cross-entropy constraint based on deep learning …”
    Volltext
    Journal Article
  13. 13

    Unsupervised Seismic Facies Deep Clustering Via Lognormal Mixture-Based Variational Autoencoder von Hua, Haowei, Qian, Feng, Zhang, Gulan, Yue, Yuehua

    ISSN: 1939-1404, 2151-1535
    Veröffentlicht: Piscataway IEEE 2023
    “… The dominant isolated learning-based SFA schemes have gained considerable attention and primarily focus on learning the best representation of prestack data and generating facies maps by clustering …”
    Volltext
    Journal Article
  14. 14

    Autoencoder-based unsupervised clustering and hashing von Zhang, Bolin, Qian, Jiangbo

    ISSN: 0924-669X, 1573-7497
    Veröffentlicht: New York Springer US 01.01.2021
    Veröffentlicht in Applied intelligence (Dordrecht, Netherlands) (01.01.2021)
    “… Faced with a large amount of data and high-dimensional data information in a database, the existing exact nearest neighbor retrieval methods cannot obtain …”
    Volltext
    Journal Article
  15. 15

    A Convolutional Autoencoder-based Explainable Clustering Approach for Resting-State EEG Analysis von Ellis, Charles A., Miller, Robyn L., Calhoun, Vince D.

    ISSN: 2694-0604, 2694-0604
    Veröffentlicht: United States IEEE 01.01.2023
    “… learning-based approaches with automated feature learning to cluster EEG. Those studies involve separately training an autoencoder and then performing clustering …”
    Volltext
    Tagungsbericht Journal Article
  16. 16

    A New Graph Autoencoder-Based Multi-Level Kernel Subspace Fusion Framework for Single-Cell Type Identification von Wang, Juan, Qiao, Tian-Jing, Zheng, Chun-Hou, Liu, Jin-Xing, Shang, Jun-Liang

    ISSN: 1545-5963, 1557-9964, 1557-9964
    Veröffentlicht: United States IEEE 01.11.2024
    “… Although many single-cell clustering methods have been developed recently, few can fully exploit the deep potential relationships between cells, resulting in suboptimal clustering …”
    Volltext
    Journal Article
  17. 17

    Achieving deep clustering through the use of variational autoencoders and similarity-based loss von Ma, He

    ISSN: 1551-0018, 1551-0018
    Veröffentlicht: AIMS Press 01.01.2022
    Veröffentlicht in Mathematical biosciences and engineering : MBE (01.01.2022)
    “… In this work, a novel variational autoencoder-based deep clustering algorithm is proposed. It treats the Gaussian mixture model as the prior latent space and uses …”
    Volltext
    Journal Article
  18. 18

    Interpretable unsupervised learning enables accurate clustering with high-throughput imaging flow cytometry von Zhang, Zunming, Chen, Xinyu, Tang, Rui, Zhu, Yuxuan, Guo, Han, Qu, Yunjia, Xie, Pengtao, Lian, Ian Y., Wang, Yingxiao, Lo, Yu-Hwa

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 23.11.2023
    Veröffentlicht in Scientific reports (23.11.2023)
    “… We present an unsupervised deep embedding algorithm, the Deep Convolutional Autoencoder-based Clustering (DCAEC …”
    Volltext
    Journal Article
  19. 19

    Patient Clustering for Vital Organ Failure Using ICD Code With Graph Attention von Liu, Zhangdaihong, Hu, Ying, Wu, Xuan, Mertes, Gert, Yang, Yang, Clifton, David A.

    ISSN: 0018-9294, 1558-2531, 1558-2531
    Veröffentlicht: United States IEEE 01.08.2023
    Veröffentlicht in IEEE transactions on biomedical engineering (01.08.2023)
    “… We employ an autoencoder-based deep clustering architecture jointly trained with a K-means loss, and a non-linear dimension reduction is performed to obtain patient clusters on the MIMIC-III dataset. Results …”
    Volltext
    Journal Article
  20. 20

    scCompressSA: dual-channel self-attention based deep autoencoder model for single-cell clustering by compressing gene–gene interactions von Zhang, Wei, Yu, Ruochen, Xu, Zeqi, Li, Junnan, Gao, Wenhao, Jiang, Mingfeng, Dai, Qi

    ISSN: 1471-2164, 1471-2164
    Veröffentlicht: London BioMed Central 29.04.2024
    Veröffentlicht in BMC genomics (29.04.2024)
    “… Background Single-cell clustering has played an important role in exploring the molecular mechanisms about cell differentiation and human diseases …”
    Volltext
    Journal Article