Suchergebnisse - Dbscan clustering algorithm

  1. 1

    GB-DBSCAN: A fast granular-ball based DBSCAN clustering algorithm von Cheng, Dongdong, Zhang, Cheng, Li, Ya, Xia, Shuyin, Wang, Guoyin, Huang, Jinlong, Zhang, Sulan, Xie, Jiang

    ISSN: 0020-0255
    Veröffentlicht: Elsevier Inc 01.07.2024
    Veröffentlicht in Information sciences (01.07.2024)
    “… Density-Based Spatial Clustering of Applications with Noise (DBSCAN) identifies high-density connected areas as clusters, so that it has advantages in discovering arbitrary-shaped clusters …”
    Volltext
    Journal Article
  2. 2

    NaGB-DBSCAN: An improved DBSCAN clustering algorithm by natural neighbor and granular-ball von Luo, Ranliang, Li, Tianshuo, Pu, Rui, Yang, Juntao, Tang, Dongming, Yang, Lijun

    ISSN: 0020-0255
    Veröffentlicht: Elsevier Inc 01.11.2025
    Veröffentlicht in Information sciences (01.11.2025)
    “… DBSCAN is a robust density-based clustering algorithm, which performs well in handling noisy and irregular datasets …”
    Volltext
    Journal Article
  3. 3

    HRRP multi-target recognition in a beam using prior-independent DBSCAN clustering algorithm von Guo, Peng-cheng, Liu, Zheng, Wang, Jing-jing

    ISSN: 1751-8784, 1751-8792
    Veröffentlicht: The Institution of Engineering and Technology 01.08.2019
    Veröffentlicht in IET radar, sonar & navigation (01.08.2019)
    “… In this study, a novel multi-target recognition method is proposed based on prior-independent density-based spatial clustering of applications with noise (PI-DBSCAN) algorithm …”
    Volltext
    Journal Article
  4. 4

    DBSCAN Clustering Algorithm Based on Big Data Is Applied in Network Information Security Detection von Zhang, Yan

    ISSN: 1939-0114, 1939-0122
    Veröffentlicht: London Hindawi 12.07.2022
    Veröffentlicht in Security and communication networks (12.07.2022)
    “… In order to improve the certainty and clarity of information security detection, an application method of big data clustering algorithm in information security detection is proposed …”
    Volltext
    Journal Article
  5. 5

    A Novel DBSCAN Clustering Algorithm via Edge Computing-Based Deep Neural Network Model for Targeted Poverty Alleviation Big Data von Liu, Hui, Liu, Yang, Qin, Zhenquan, Zhang, Ran, Zhang, Zheng, Mu, Liao

    ISSN: 1530-8669, 1530-8677
    Veröffentlicht: Oxford Hindawi 2021
    “… Big data technology has been developed rapidly in recent years. The performance improvement mechanism of targeted poverty alleviation is studied through the …”
    Volltext
    Journal Article
  6. 6

    Artificial rabbits optimization algorithm with automatically DBSCAN clustering algorithm to similarity agent update for features selection problems von Hamdipour, Ali, Basiri, Abdolali, Zaare, Mostafa, Mirjalili, Seyedali

    ISSN: 0920-8542, 1573-0484
    Veröffentlicht: New York Springer US 01.01.2025
    Veröffentlicht in The Journal of supercomputing (01.01.2025)
    “… In this work, a new feature selection algorithm based on ARO meta-heuristic algorithm and DBSCAN clustering algorithm with automatic adjustment of input parameters (ARO-DBSCAN) is proposed …”
    Volltext
    Journal Article
  7. 7

    Real-Time Superpixel Segmentation by DBSCAN Clustering Algorithm von Shen, Jianbing, Hao, Xiaopeng, Liang, Zhiyuan, Liu, Yu, Wang, Wenguan, Shao, Ling

    ISSN: 1057-7149, 1941-0042, 1941-0042
    Veröffentlicht: United States IEEE 01.12.2016
    Veröffentlicht in IEEE transactions on image processing (01.12.2016)
    “… In this paper, we propose a real-time image superpixel segmentation method with 50 frames/s by using the density-based spatial clustering of applications with noise (DBSCAN) algorithm …”
    Volltext
    Journal Article
  8. 8

    HY-DBSCAN: A hybrid parallel DBSCAN clustering algorithm scalable on distributed-memory computers von Wu, Guoqing, Cao, Liqiang, Tian, Hongyun, Wang, Wei

    ISSN: 0743-7315
    Veröffentlicht: Elsevier Inc 01.10.2022
    Veröffentlicht in Journal of parallel and distributed computing (01.10.2022)
    “… Dbscan is a density-based clustering algorithm which is well known for its ability to discover clusters of arbitrary shape as well as to distinguish noise …”
    Volltext
    Journal Article
  9. 9

    Fuzzy extensions of the DBScan clustering algorithm von Ienco, Dino, Bordogna, Gloria

    ISSN: 1432-7643, 1433-7479
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2018
    Veröffentlicht in Soft computing (Berlin, Germany) (01.03.2018)
    “… The DBSCAN algorithm is a well-known density-based clustering approach particularly useful in spatial data mining for its ability to find objects …”
    Volltext
    Journal Article
  10. 10

    A fast DBSCAN clustering algorithm by accelerating neighbor searching using Groups method von Mahesh Kumar, K., Rama Mohan Reddy, A.

    ISSN: 0031-3203, 1873-5142
    Veröffentlicht: Elsevier Ltd 01.10.2016
    Veröffentlicht in Pattern recognition (01.10.2016)
    “… Density Based Spatial Clustering of Applications with Noise (DBSCAN) can discover clusters of arbitrary shape and also handles outliers effectively …”
    Volltext
    Journal Article
  11. 11

    ST-DBSCAN: An algorithm for clustering spatial–temporal data von Birant, Derya, Kut, Alp

    ISSN: 0169-023X, 1872-6933
    Veröffentlicht: Elsevier B.V 2007
    Veröffentlicht in Data & knowledge engineering (2007)
    “… This paper presents a new density-based clustering algorithm, ST-DBSCAN, which is based on DBSCAN …”
    Volltext
    Journal Article
  12. 12

    Efficient and Fast Active Equalization Method for Retired Battery Pack Using Wide Voltage Range Bidirectional Converter and DBSCAN Clustering Algorithm von Lujun, Wang, Jinyang, Ke, Min, Zhan, Aina, Tian, Tiezhou, Wu, Xiaoxing, Zhang, Jiuchun, Jiang

    ISSN: 0885-8993, 1941-0107
    Veröffentlicht: New York IEEE 01.11.2022
    Veröffentlicht in IEEE transactions on power electronics (01.11.2022)
    “… The DBSCAN clustering algorithm is used to divide all battery cells into groups, and each group may contain one or more adjacent and nonadjacent battery …”
    Volltext
    Journal Article
  13. 13

    Multivariate weather anomaly detection using DBSCAN clustering algorithm von Wibisono, S, Anwar, M T, Supriyanto, A, Amin, I H A

    ISSN: 1742-6588, 1742-6596
    Veröffentlicht: Bristol IOP Publishing 01.04.2021
    Veröffentlicht in Journal of physics. Conference series (01.04.2021)
    “… This research uses the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm to separate between normal and anomalous weather data by considering multiple weather variables …”
    Volltext
    Journal Article
  14. 14

    An automated approach for wood-leaf separation from terrestrial LIDAR point clouds using the density based clustering algorithm DBSCAN von Ferrara, Roberto, Virdis, Salvatore G.P., Ventura, Andrea, Ghisu, Tiziano, Duce, Pierpaolo, Pellizzaro, Grazia

    ISSN: 0168-1923, 1873-2240
    Veröffentlicht: Elsevier B.V 15.11.2018
    Veröffentlicht in Agricultural and forest meteorology (15.11.2018)
    “… •A geometric method for wood-leaves separation from TLS point clouds is proposed.•Classification of wood points is highly accurate in broad leaved non-decidous …”
    Volltext
    Journal Article
  15. 15

    A data mining approach for improved interpretation of ERT inverted sections using the DBSCAN clustering algorithm von Sabor, Kawtar, Jougnot, Damien, Guerin, Roger, Steck, Barthélémy, Henault, Jean-Marie, Apffel, Louis, Vautrin, Denis

    ISSN: 0956-540X, 1365-246X
    Veröffentlicht: Oxford University Press 01.05.2021
    Veröffentlicht in Geophysical journal international (01.05.2021)
    “… We selected an algorithm known as DBSCAN (Density-Based Spatial Clustering of Applications with Noise …”
    Volltext
    Journal Article
  16. 16

    An Extended DBSCAN Clustering Algorithm von Fahim, Ahmed

    ISSN: 2158-107X, 2156-5570
    Veröffentlicht: West Yorkshire Science and Information (SAI) Organization Limited 2022
    “… Finding clusters of different densities is a challenging task. DBSCAN “Density-Based Spatial Clustering of Applications with Noise …”
    Volltext
    Journal Article
  17. 17

    An Entropy-based Adaptive DBSCAN Clustering Algorithm and Its Application in THz Wireless Channels von Luo, Jiao, Liao, Xi, Wang, Yang, Zhang, Jie, Yu, Ziming, Wang, Guangjian, Li, Xianjin

    ISSN: 0018-926X, 1558-2221
    Veröffentlicht: New York IEEE 01.12.2023
    Veröffentlicht in IEEE transactions on antennas and propagation (01.12.2023)
    “… In this paper, we propose an entropy-based adaptive density-based spatial clustering of applications with noise (EBA-DBSCAN …”
    Volltext
    Journal Article
  18. 18

    Machine Well Screening Method Based on POI Data and DBSCAN Clustering Algorithm von Gan, Xing, Fan, Haiyan, Yang, Moyuan, Tang, Fangfang, Liu, Honglu, Ma, Zhijun

    ISSN: 1545-598X, 1558-0571
    Veröffentlicht: Piscataway IEEE 2025
    Veröffentlicht in IEEE geoscience and remote sensing letters (2025)
    “… ArcGIS spatial analysis helped us pinpoint POIs with significant water demand. The DBSCAN clustering algorithm was then employed to scrutinize …”
    Volltext
    Journal Article
  19. 19

    Classification of Subgroups of Solar and Heliospheric Observatory (SOHO) Sungrazing Kreutz Comet Group by the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Algorithm von Karimova, Ulkar, Yi, Yu

    ISSN: 2093-5587, 2093-1409
    Veröffentlicht: The Korean Space Science Society 01.03.2024
    Veröffentlicht in Journal of astronomy and space sciences (01.03.2024)
    “… In this study, we introduce an automated classification technique using the density-based spatial clustering of applications with noise (DBSCAN …”
    Volltext
    Journal Article
  20. 20

    Membership determination in open clusters using the DBSCAN Clustering Algorithm von Raja, M., Hasan, P., Mahmudunnobe, Md, Saifuddin, Md, Hasan, S.N.

    ISSN: 2213-1337, 2213-1345
    Veröffentlicht: Elsevier B.V 01.04.2024
    Veröffentlicht in Astronomy and computing (01.04.2024)
    “… In this paper, we apply the machine learning clustering algorithm Density Based Spatial Clustering of Applications with Noise (DBSCAN …”
    Volltext
    Journal Article