Suchergebnisse - Convolutional denoising autoencoder~

  1. 1

    Signal‐to‐noise ratio enhancement for Raman spectra based on optimized Raman spectrometer and convolutional denoising autoencoder von Fan, Xian‐guang, Zeng, Yingjie, Zhi, Yu‐Liang, Nie, Ting, Xu, Ying‐jie, Wang, Xin

    ISSN: 0377-0486, 1097-4555
    Veröffentlicht: Bognor Regis Wiley Subscription Services, Inc 01.04.2021
    Veröffentlicht in Journal of Raman spectroscopy (01.04.2021)
    “… ‐the‐shelf cylindrical lens. On the other side of the algorithm, a relevant automatic denoising method of convolutional denoising autoencoder (CDAE …”
    Volltext
    Journal Article
  2. 2

    Adversarial Defense Based on Denoising Convolutional Autoencoder in EEG-Based Brain-Computer Interfaces von Ding, Yongting, Li, Lin, Li, Qingyan

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2024
    Veröffentlicht in IEEE access (2024)
    “… This study introduces a defense approach based on autoencoders, termed the Denoising Convolutional Autoencoder (DCAE …”
    Volltext
    Journal Article
  3. 3

    Radar Signal Intra-Pulse Modulation Recognition Based on Convolutional Denoising Autoencoder and Deep Convolutional Neural Network von Qu, Zhiyu, Wang, Wenyang, Hou, Changbo, Hou, Chenfan

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2019
    Veröffentlicht in IEEE access (2019)
    “… A radar signal intra-pulse modulation recognition method based on convolutional denoising autoencoder (CDAE …”
    Volltext
    Journal Article
  4. 4

    Ovarian tumor diagnosis using deep convolutional neural networks and a denoising convolutional autoencoder von Jung, Yuyeon, Kim, Taewan, Han, Mi-Ryung, Kim, Sejin, Kim, Geunyoung, Lee, Seungchul, Choi, Youn Jin

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 11.10.2022
    Veröffentlicht in Scientific reports (11.10.2022)
    “… Discrimination of ovarian tumors is necessary for proper treatment. In this study, we developed a convolutional neural network model with a convolutional autoencoder (CNN-CAE …”
    Volltext
    Journal Article
  5. 5

    Colour‐patterned fabric defect detection based on an unsupervised multi‐scale U‐shaped denoising convolutional autoencoder model von Zhang, Hongwei, Liu, Shuting, Tan, Quanlu, Lu, Shuai, Yao, Le, Ge, Zhiqiang

    ISSN: 1472-3581, 1478-4408
    Veröffentlicht: Bradford Wiley Subscription Services, Inc 01.10.2022
    Veröffentlicht in Coloration technology (01.10.2022)
    “… ‐patterned fabric images. Second, a multi‐scale U‐shaped denoising convolutional autoencoder was modelled using defect …”
    Volltext
    Journal Article
  6. 6

    Batch process quality prediction based on denoising autoencoder-spatial temporal convolutional attention mechanism fusion network: Batch process quality prediction based on denoising autoencoder-spatial temporal convolutional attention mechanism fusion network von Zhang, Yan, Cao, Jie, Zhao, Xiaoqiang, Hui, Yongyong

    ISSN: 0924-669X, 1573-7497
    Veröffentlicht: New York Springer US 01.05.2025
    Veröffentlicht in Applied intelligence (Dordrecht, Netherlands) (01.05.2025)
    “… to prediction performance. Therefore, a denoising autoencoder-Spatial Temporal Convolution Attention Fusion Network (DAE-STCAFN …”
    Volltext
    Journal Article
  7. 7

    Within-project and cross-project just-in-time defect prediction based on denoising autoencoder and convolutional neural network von Zhu, Kun, Zhang, Nana, Ying, Shi, Zhu, Dandan

    ISSN: 1751-8806, 1751-8814, 1751-8814
    Veröffentlicht: The Institution of Engineering and Technology 01.06.2020
    Veröffentlicht in IET software (01.06.2020)
    “… Therefore, the authors propose a novel just-in-time defect prediction model named DAECNN-JDP based on denoising autoencoder and convolutional neural network in this study, which has three main advantages …”
    Volltext
    Journal Article
  8. 8

    Medical Image Denoising Using Convolutional Denoising Autoencoders von Gondara, Lovedeep

    ISSN: 2375-9259
    Veröffentlicht: IEEE 01.12.2016
    “… In this paper we show that using small sample size, denoising autoencoders constructed using convolutional layers can be used for efficient denoising of medical images …”
    Volltext
    Tagungsbericht
  9. 9

    Performance evaluation of image denoising developed using convolutional denoising autoencoders in chest radiography von Lee, Donghoon, Choi, Sunghoon, Kim, Hee-Joung

    ISSN: 0168-9002, 1872-9576
    Veröffentlicht: Elsevier B.V 11.03.2018
    “… In this study, we introduce an image denoising technique based on a convolutional denoising autoencoder (CDAE …”
    Volltext
    Journal Article
  10. 10

    Automatic Fabric Defect Detection with a Multi-Scale Convolutional Denoising Autoencoder Network Model von Mei, Shuang, Wang, Yudan, Wen, Guojun

    ISSN: 1424-8220, 1424-8220
    Veröffentlicht: Switzerland MDPI AG 02.04.2018
    Veröffentlicht in Sensors (Basel, Switzerland) (02.04.2018)
    “… This approach is used to reconstruct image patches with a convolutional denoising autoencoder network at multiple Gaussian pyramid levels and to synthesize detection results from the corresponding resolution channels …”
    Volltext
    Journal Article
  11. 11
  12. 12

    Attention-Based Convolutional Denoising Autoencoder for Two-Lead ECG Denoising and Arrhythmia Classification von Singh, Prateek, Sharma, Ambalika

    ISSN: 0018-9456, 1557-9662
    Veröffentlicht: New York IEEE 2022
    “… To achieve this, a novel attention-based convolutional denoising autoencoder (ACDAE) model is proposed that utilizes a skip-layer and attention module for reliable reconstruction of ECG signals from extreme noise conditions …”
    Volltext
    Journal Article
  13. 13

    Galaxy Model Subtraction with a Convolutional Denoising Autoencoder von Liu, Rongrong, Peng, Eric W., Wang, Kaixiang, Ferrarese, Laura, Côté, Patrick

    ISSN: 0004-637X, 1538-4357, 1538-4357
    Veröffentlicht: Philadelphia The American Astronomical Society 01.12.2025
    Veröffentlicht in The Astrophysical journal (01.12.2025)
    “… We build a convolutional denoising autoencoder (DAE) for galaxy model subtraction: images are compressed to a latent representation and reconstructed to yield the smooth galaxy, suppressing other objects …”
    Volltext
    Journal Article
  14. 14

    Robust Feature Extraction for Geochemical Anomaly Recognition Using a Stacked Convolutional Denoising Autoencoder von Xiong, Yihui, Zuo, Renguang

    ISSN: 1874-8961, 1874-8953
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2022
    Veröffentlicht in Mathematical geosciences (01.04.2022)
    “… Our approach adopted a stacked convolutional denoising autoencoder (SCDAE) to extract robust features and decreased the level of sensitivity to partially corrupted data, that is, input data that are partially missing …”
    Volltext
    Journal Article
  15. 15

    Noise Reduction in ECG Signals Using Fully Convolutional Denoising Autoencoders von Chiang, Hsin-Tien, Hsieh, Yi-Yen, Fu, Szu-Wei, Hung, Kuo-Hsuan, Tsao, Yu, Chien, Shao-Yi

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2019
    Veröffentlicht in IEEE access (2019)
    “… A denoising autoencoder (DAE) can be applied to reconstruct the clean data from its noisy version …”
    Volltext
    Journal Article
  16. 16

    Elimination of Random Mixed Noise in ECG Using Convolutional Denoising Autoencoder With Transformer Encoder von Chen, Meng, Li, Yongjian, Zhang, Liting, Liu, Lei, Han, Baokun, Shi, Wenzhuo, Wei, Shoushui

    ISSN: 2168-2194, 2168-2208, 2168-2208
    Veröffentlicht: United States IEEE 01.04.2024
    Veröffentlicht in IEEE journal of biomedical and health informatics (01.04.2024)
    “… To suppress random mixed noise (RMN) in ECG with less distortion, we propose a Transformer-based Convolutional Denoising AutoEncoder model (TCDAE) in this study …”
    Volltext
    Journal Article
  17. 17

    Separating the EoR signal with a convolutional denoising autoencoder: a deep-learning-based method von Li, Weitian, Xu, Haiguang, Ma, Zhixian, Zhu, Ruimin, Hu, Dan, Zhu, Zhenghao, Gu, Junhua, Shan, Chenxi, Zhu, Jie, Wu, Xiang-Ping

    ISSN: 0035-8711, 1365-2966
    Veröffentlicht: Oxford University Press 11.05.2019
    Veröffentlicht in Monthly notices of the Royal Astronomical Society (11.05.2019)
    “… of interferometers, will generate significant fluctuations along the frequency dimension. To address this issue, we propose a novel deep-learning-based method that uses a nine-layer convolutional denoising autoencoder (CDAE …”
    Volltext
    Journal Article
  18. 18

    Enhancing SNR in CEST imaging: A deep learning approach with a denoising convolutional autoencoder von Kurmi, Yashwant, Viswanathan, Malvika, Zu, Zhongliang

    ISSN: 0740-3194, 1522-2594, 1522-2594
    Veröffentlicht: United States Wiley Subscription Services, Inc 01.12.2024
    Veröffentlicht in Magnetic resonance in medicine (01.12.2024)
    “… Purpose To develop a SNR enhancement method for CEST imaging using a denoising convolutional autoencoder (DCAE …”
    Volltext
    Journal Article
  19. 19

    Fault Diagnosis of Rolling Bearing Using Convolutional Denoising Autoencoder and Siamese Neural Network With Small Sample von Zhao, Xufeng, Chen, Ying, Yang, Mengshu, Xiang, Jiawei

    ISSN: 2327-4662, 2327-4662
    Veröffentlicht: Piscataway IEEE 01.03.2025
    Veröffentlicht in IEEE internet of things journal (01.03.2025)
    “… ) the scarcity of fault data for effective diagnostic tasks in practical scenarios. To address these issues, this article proposes a novel method termed convolutional denoising autoencoder and siamese neural network (CDAE-SNN …”
    Volltext
    Journal Article
  20. 20

    A novel dimensionality reduction approach for ECG signal via convolutional denoising autoencoder with LSTM von Dasan, Evangelin, Panneerselvam, Ithayarani

    ISSN: 1746-8094, 1746-8108
    Veröffentlicht: Elsevier Ltd 01.01.2021
    Veröffentlicht in Biomedical signal processing and control (01.01.2021)
    “… •Compressing the signal before transmission can reduce the signal transmission cost in wearable technology.•Reduced transmission time can increase the battery …”
    Volltext
    Journal Article