Suchergebnisse - Constrained autoencoder*

  1. 1

    Recognition of multivariate geochemical anomalies using a geologically-constrained variational autoencoder network with spectrum separable module – A case study in Shangluo District, China von Zhao, Bo, Zhang, Dehui, Tang, Panpan, Luo, Xiaoyan, Wan, Haoming, An, Lin

    ISSN: 0883-2927, 1872-9134
    Veröffentlicht: Elsevier Ltd 01.09.2023
    Veröffentlicht in Applied geochemistry (01.09.2023)
    “… This study has developed a novel variational autoencoder architecture by incorporating the spectrum separable module, termed SSM-VAE, so as to recognize the multi-mineral-species geochemical patterns …”
    Volltext
    Journal Article
  2. 2

    Autoencoder Constrained Clustering With Adaptive Neighbors von Li, Xuelong, Zhang, Rui, Wang, Qi, Zhang, Hongyuan

    ISSN: 2162-237X, 2162-2388, 2162-2388
    Veröffentlicht: United States IEEE 01.01.2021
    “… , autoencoder constrained clustering with adaptive neighbors (ACC_AN), is developed. The proposed method not only can adaptively investigate the nonlinear structure of data …”
    Volltext
    Journal Article
  3. 3

    Slow feature‐constrained decomposition autoencoder: Application to process anomaly detection and localization von Jia, Mingwei, Jiang, Lingwei, Hu, Junhao, Liu, Yi, Chen, Tao

    ISSN: 0890-6327, 1099-1115
    Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 01.07.2025
    “… To address this challenge, we propose a slow feature‐constrained decomposition autoencoder (SFC‐DAE …”
    Volltext
    Journal Article
  4. 4

    A multi‐feature space constrained stacked autoencoder and its application for uncertain process monitoring von Yang, Jiandong, Wang, Chenhao, Yu, Jianbo, Yan, Xuefeng

    ISSN: 0008-4034, 1939-019X
    Veröffentlicht: 07.10.2025
    Veröffentlicht in Canadian journal of chemical engineering (07.10.2025)
    “… To mitigate these issues, we propose a novel process monitoring method based on a multi‐feature space constrained stacked autoencoder (MFSCSAE …”
    Volltext
    Journal Article
  5. 5

    AEGCN: An Autoencoder-Constrained Graph Convolutional Network von Ma, Mingyuan, Na, Sen, Wang, Hongyu

    ISSN: 0925-2312, 1872-8286
    Veröffentlicht: Elsevier B.V 07.04.2021
    Veröffentlicht in Neurocomputing (Amsterdam) (07.04.2021)
    “… We propose a novel neural network architecture, called autoencoder-constrained graph convolutional network, to solve node classification task on graph domains …”
    Volltext
    Journal Article
  6. 6

    Subspace clustering using a low-rank constrained autoencoder von Chen, Yuanyuan, Zhang, Lei, Yi, Zhang

    ISSN: 0020-0255, 1872-6291
    Veröffentlicht: Elsevier Inc 01.01.2018
    Veröffentlicht in Information sciences (01.01.2018)
    “… Many data representation methods have been developed in recent years. Typical among them are low-rank representation (LRR) and an autoencoder …”
    Volltext
    Journal Article
  7. 7

    A computer‐aided diagnostic system for detecting diabetic retinopathy in optical coherence tomography images von ElTanboly, Ahmed, Ismail, Marwa, Shalaby, Ahmed, Switala, Andy, El‐Baz, Ayman, Schaal, Shlomit, Gimel’farb, Georgy, El‐Azab, Magdi

    ISSN: 0094-2405, 2473-4209, 2473-4209
    Veröffentlicht: United States 01.03.2017
    Veröffentlicht in Medical physics (Lancaster) (01.03.2017)
    “… Purpose Detection (diagnosis) of diabetic retinopathy (DR) in optical coherence tomography (OCT) images for patients with type 2 diabetes, but almost …”
    Volltext
    Journal Article
  8. 8

    Hyperspectral unmixing for Raman spectroscopy via physics-constrained autoencoders von Georgiev, Dimitar, Fernández-Galiana, Álvaro, Vilms Pedersen, Simon, Papadopoulos, Georgios, Xie, Ruoxiao, Stevens, Molly M, Barahona, Mauricio

    ISSN: 1091-6490, 1091-6490
    Veröffentlicht: United States 05.11.2024
    “… often struggle with complex mixture scenarios encountered in practice. Here, we develop hyperspectral unmixing algorithms based on autoencoder neural networks …”
    Weitere Angaben
    Journal Article
  9. 9

    Deep Learning of Constrained Autoencoders for Enhanced Understanding of Data von Ayinde, Babajide O., Zurada, Jacek M.

    ISSN: 2162-237X, 2162-2388, 2162-2388
    Veröffentlicht: United States IEEE 01.09.2018
    “… This is especially prominent when multilayer deep learning architectures are used. This paper demonstrates how to remove these bottlenecks within the architecture of non-negativity constrained autoencoder …”
    Volltext
    Journal Article
  10. 10

    Driver identification based on hidden feature extraction by using adaptive nonnegativity-constrained autoencoder von Chen, Jie, Wu, ZhongCheng, Zhang, Jun

    ISSN: 1568-4946, 1872-9681
    Veröffentlicht: Elsevier B.V 01.01.2019
    Veröffentlicht in Applied soft computing (01.01.2019)
    “… identification accuracy and long prediction time. We first propose using an unsupervised three-layer nonnegativity-constrained autoencoder to adaptive search the optimal size of the sliding window, then construct a deep nonnegativity-constrained …”
    Volltext
    Journal Article
  11. 11

    Constrained Autoencoder-Based Pulse Compressed Thermal Wave Imaging for Sub-Surface Defect Detection von Kaur, Kirandeep, Mulaveesala, Ravibabu, Mishra, Priyanka

    ISSN: 1530-437X, 1558-1748
    Veröffentlicht: New York IEEE 15.09.2022
    Veröffentlicht in IEEE sensors journal (15.09.2022)
    “… This paper proposes a novel constrained and regularized autoencoder based thermography approach for sub-surface defect detection in a mild steel specimen …”
    Volltext
    Journal Article
  12. 12

    Learning nonlinear projections for reduced-order modeling of dynamical systems using constrained autoencoders von Otto, Samuel E, Macchio, Gregory R, Rowley, Clarence W

    ISSN: 1089-7682, 1089-7682
    Veröffentlicht: 01.11.2023
    Veröffentlicht in Chaos (Woodbury, N.Y.) (01.11.2023)
    “… To begin to address these issues, we introduce a parametric class of nonlinear projections described by constrained autoencoder neural networks in which both the manifold and the projection fibers are learned from data …”
    Weitere Angaben
    Journal Article
  13. 13

    Improving Channel Charting with Representation -Constrained Autoencoders von Huang, Pengzhi, CastaNeda, Oscar, Gonultas, Emre, Medjkouh, SaId, Tirkkonen, Olav, Goldstein, Tom, Studer, Christoph

    ISSN: 1948-3252
    Veröffentlicht: IEEE 01.07.2019
    “… In this paper, we demonstrate that autoencoder (AE)-based CC can be augmented with side information that is obtained during the CSI acquisition process …”
    Volltext
    Tagungsbericht
  14. 14

    Generative adversarial network constrained multiple loss autoencoder: A deep learning‐based individual atrophy detection for Alzheimer's disease and mild cognitive impairment von Shi, Rong, Sheng, Can, Jin, Shichen, Zhang, Qi, Zhang, Shuoyan, Zhang, Liang, Ding, Changchang, Wang, Luyao, Wang, Lei, Han, Ying, Jiang, Jiehui

    ISSN: 1065-9471, 1097-0193, 1097-0193
    Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 15.02.2023
    Veröffentlicht in Human brain mapping (15.02.2023)
    “… Here, we proposed a framework called generative adversarial network constrained multiple loss autoencoder (GANCMLAE …”
    Volltext
    Journal Article
  15. 15

    Driving Safety Risk Prediction Using Cost-Sensitive With Nonnegativity-Constrained Autoencoders Based on Imbalanced Naturalistic Driving Data von Chen, Jie, Wu, ZhongCheng, Zhang, Jun

    ISSN: 1524-9050, 1558-0016
    Veröffentlicht: New York IEEE 01.12.2019
    “… In this paper, we propose a novel cost-sensitive L 1 /L 2 -nonnegativity-constrained deep autoencoder network for driving safety risk prediction …”
    Volltext
    Journal Article
  16. 16

    Bubble: a fast single-cell RNA-seq imputation using an autoencoder constrained by bulk RNA-seq data von Chen, Siqi, Yan, Xuhua, Zheng, Ruiqing, Li, Min

    ISSN: 1467-5463, 1477-4054, 1477-4054
    Veröffentlicht: England Oxford University Press 19.01.2023
    Veröffentlicht in Briefings in bioinformatics (19.01.2023)
    “… We propose Bubble, which first identifies dropout events from all zeros based on expression rate and coefficient of variation of genes within cell subpopulation, and then leverages an autoencoder …”
    Volltext
    Journal Article
  17. 17

    Learned Design of a Compressive Hyperspectral Imager for Remote Sensing by a Physics-Constrained Autoencoder von Heiser, Yaron, Stern, Adrian

    ISSN: 2072-4292, 2072-4292
    Veröffentlicht: Basel MDPI AG 01.08.2022
    Veröffentlicht in Remote sensing (Basel, Switzerland) (01.08.2022)
    “… We present a novel physics-constrained autoencoder (PyCAE) for the design and optimization of a physically realizable sensing model …”
    Volltext
    Journal Article
  18. 18

    Geometry-Based Molecular Generation With Deep Constrained Variational Autoencoder von Li, Chunyan, Yao, Junfeng, Wei, Wei, Niu, Zhangming, Zeng, Xiangxiang, Li, Jin, Wang, Jianmin

    ISSN: 2162-237X, 2162-2388, 2162-2388
    Veröffentlicht: United States IEEE 01.04.2024
    “… We proposed GEOM-CVAE, a constrained variational autoencoder based on geometric representation for molecular generation with specific properties, which is protein-context-dependent …”
    Volltext
    Journal Article
  19. 19

    Unsupervised Health Indicator Construction by a Novel Degradation-Trend-Constrained Variational Autoencoder and Its Applications von Qin, Yi, Zhou, Jianghong, Chen, Dingliang

    ISSN: 1083-4435, 1941-014X
    Veröffentlicht: New York IEEE 01.06.2022
    Veröffentlicht in IEEE/ASME transactions on mechatronics (01.06.2022)
    “… The hidden variables of variational autoencoder (VAE) can represent the HI values for a life-cycle dataset with obvious degradation trend …”
    Volltext
    Journal Article
  20. 20

    Phy-ChemNODE: an end-to-end physics-constrained autoencoder-NeuralODE framework for learning stiff chemical kinetics of hydrocarbon fuels von Kumar, Tadbhagya, Kumar, Anuj, Pal, Pinaki

    ISSN: 2813-0456, 2813-0456
    Veröffentlicht: Frontiers Media S.A 15.08.2025
    Veröffentlicht in Frontiers in thermal engineering (15.08.2025)
    “… In this work, a physics-constrained Autoencoder (AE)-NeuralODE framework, termed as PhyChemNODE, is developed for data-driven modeling and temporal emulation of stiff chemical kinetics for complex hydrocarbon fuels, wherein a non-linear AE is employed …”
    Volltext
    Journal Article