Výsledky vyhledávání - Computing methodologies Machine learning Learning paradigms Supervised learning~

  1. 1

    PreSto: An In-Storage Data Preprocessing System for Training Recommendation Models Autor Lee, Yunjae, Kim, Hyeseong, Rhu, Minsoo

    Vydáno: IEEE 29.06.2024
    “…Training recommendation systems (RecSys) faces several challenges as it requires the "data preprocessing" stage to preprocess an ample amount of raw data and…”
    Získat plný text
    Konferenční příspěvek
  2. 2

    Dissecting Global Search: A Simple Yet Effective Method to Boost Individual Discrimination Testing and Repair Autor Quan, Lili, Li, Tianlin, Xie, Xiaofei, Chen, Zhenpeng, Chen, Sen, Jiang, Lingxiao, Li, Xiaohong

    ISSN: 1558-1225
    Vydáno: IEEE 26.04.2025
    “…Deep Learning (DL) has achieved significant success in socially critical decision-making applications but often exhibits unfair behaviors, raising social concerns…”
    Získat plný text
    Konferenční příspěvek
  3. 3

    PrefixRL: Optimization of Parallel Prefix Circuits using Deep Reinforcement Learning Autor Roy, Rajarshi, Raiman, Jonathan, Kant, Neel, Elkin, Ilyas, Kirby, Robert, Siu, Michael, Oberman, Stuart, Godil, Saad, Catanzaro, Bryan

    Vydáno: IEEE 05.12.2021
    “…In this work, we present a reinforcement learning (RL) based approach to designing parallel prefix circuits such as adders or priority encoders that are fundamental to high-performance digital design…”
    Získat plný text
    Konferenční příspěvek
  4. 4

    Softermax: Hardware/Software Co-Design of an Efficient Softmax for Transformers Autor Stevens, Jacob R., Venkatesan, Rangharajan, Dai, Steve, Khailany, Brucek, Raghunathan, Anand

    Vydáno: IEEE 05.12.2021
    “…Transformers have transformed the field of natural language processing. Their superior performance is largely attributed to the use of stacked "self-attention"…”
    Získat plný text
    Konferenční příspěvek
  5. 5

    Code Difference Guided Adversarial Example Generation for Deep Code Models Autor Tian, Zhao, Chen, Junjie, Jin, Zhi

    ISSN: 2643-1572
    Vydáno: IEEE 11.09.2023
    “…Adversarial examples are important to test and enhance the robustness of deep code models. As source code is discrete and has to strictly stick to complex…”
    Získat plný text
    Konferenční příspěvek
  6. 6

    Muffin: A Framework Toward Multi-Dimension AI Fairness by Uniting Off-the-Shelf Models Autor Sheng, Yi, Yang, Junhuan, Yang, Lei, Shi, Yiyu, Hu, Jingtong, Jiang, Weiwen

    Vydáno: United States IEEE 01.07.2023
    “…Model fairness (a.k.a., bias) has become one of the most critical problems in a wide range of AI applications. An unfair model in autonomous driving may cause…”
    Získat plný text
    Konferenční příspěvek Journal Article
  7. 7

    UniGenCoder: Merging SEQ2SEQ and SEQ2TREE Paradigms for Unified Code Generation Autor Shao, Liangying, Yan, Yanfu, Poshyvanyk, Denys, Su, Jinsong

    ISSN: 2832-7632
    Vydáno: IEEE 27.04.2025
    “…Deep learning-based code generation has completely transformed the way developers write programs today…”
    Získat plný text
    Konferenční příspěvek
  8. 8

    Toward Individual Fairness Testing with Data Validity Autor Kitamura, Takashi, Amasaki, Sousuke, Inoue, Jun, Isobe, Yoshinao, Toda, Takahisa

    ISSN: 2643-1572
    Vydáno: ACM 27.10.2024
    “…Individual fairness testing (Ift) is a framework to find discriminatory instances within a given classifier. In this paper, we show our idea of a Ift…”
    Získat plný text
    Konferenční příspěvek
  9. 9

    Fairquant: Certifying and Quantifying Fairness of Deep Neural Networks Autor Kim, Brian Hyeongseok, Wang, Jingbo, Wang, Chao

    ISSN: 1558-1225
    Vydáno: IEEE 26.04.2025
    “…We propose a method for formally certifying and quantifying individual fairness of deep neural networks (DNN). Individual fairness guarantees that any two…”
    Získat plný text
    Konferenční příspěvek
  10. 10

    A Unified DNN Weight Pruning Framework Using Reweighted Optimization Methods Autor Zhang, Tianyun, Ma, Xiaolong, Zhan, Zheng, Zhou, Shanglin, Ding, Caiwen, Fardad, Makan, Wang, Yanzhi

    Vydáno: IEEE 05.12.2021
    “…To address the large model size and intensive computation requirement of deep neural networks (DNNs), weight pruning techniques have been proposed and…”
    Získat plný text
    Konferenční příspěvek
  11. 11

    Diversity Drives Fairness: Ensemble of Higher Order Mutants for Intersectional Fairness of Machine Learning Software Autor Chen, Zhenpeng, Li, Xinyue, Zhang, Jie M., Sarro, Federica, Liu, Yang

    ISSN: 1558-1225
    Vydáno: IEEE 26.04.2025
    “…Intersectional fairness is a critical requirement for Machine Learning (ML) software, demanding fairness across subgroups defined by multiple protected attributes…”
    Získat plný text
    Konferenční příspěvek
  12. 12

    Online Human Activity Recognition using Low-Power Wearable Devices Autor Bhat, Ganapati, Deb, Ranadeep, Chaurasia, Vatika Vardhan, Shill, Holly, Ogras, Umit Y.

    ISSN: 1558-2434
    Vydáno: ACM 05.11.2018
    “…Human activity recognition (HAR) has attracted significant research interest due to its applications in health monitoring and patient rehabilitation. Recent…”
    Získat plný text
    Konferenční příspěvek
  13. 13

    Neurally-Inspired Hyperdimensional Classification for Efficient and Robust Biosignal Processing Autor Ni, Yang, Lesica, Nicholas, Zeng, Fan-Gang, Imani, Mohsen

    ISSN: 1558-2434
    Vydáno: ACM 29.10.2022
    “…The biosignals consist of several sensors that collect time series information. Since time series contain temporal dependencies, they are difficult to process by existing machine learning algorithms…”
    Získat plný text
    Konferenční příspěvek
  14. 14

    RL-CCD: Concurrent Clock and Data Optimization using Attention-Based Self-Supervised Reinforcement Learning Autor Lu, Yi-Chen, Chan, Wei-Ting, Guo, Deyuan, Kundu, Sudipto, Khandelwal, Vishal, Lim, Sung Kyu

    Vydáno: IEEE 09.07.2023
    “… In this paper, we overcome this issue by presenting RL-CCD, a Reinforcement Learning (RL) agent that selects endpoints for useful skew prioritization using the proposed EP-GNN, an endpoint-oriented Graph Neural Network (GNN…”
    Získat plný text
    Konferenční příspěvek
  15. 15

    An Extension to Basis-Hypervectors for Learning from Circular Data in Hyperdimensional Computing Autor Nunes, Igor, Heddes, Mike, Givargis, Tony, Nicolau, Alexandru

    Vydáno: IEEE 09.07.2023
    “…Hyperdimensional Computing (HDC) is a computation framework based on random vector spaces, particularly useful for machine learning in resource-constrained environments…”
    Získat plný text
    Konferenční příspěvek
  16. 16

    CodeS: Towards Code Model Generalization Under Distribution Shift Autor Hu, Qiang, Guo, Yuejun, Xie, Xiaofei, Cordy, Maxime, Papadakis, Mike, Ma, Lei, Le Traon, Yves

    ISSN: 2832-7632
    Vydáno: IEEE 01.05.2023
    “…Distribution shift has been a longstanding challenge for the reliable deployment of deep learning (DL…”
    Získat plný text
    Konferenční příspěvek
  17. 17

    RegHD: Robust and Efficient Regression in Hyper-Dimensional Learning System Autor Hernandez-Cano, Alejandro, Zhuo, Cheng, Yin, Xunzhao, Imani, Mohsen

    Vydáno: IEEE 05.12.2021
    “…Machine learning (ML) algorithms are key enablers to effectively assimilate and extract information from many generated data in the Internet of Things…”
    Získat plný text
    Konferenční příspěvek
  18. 18

    FF-INT8: Efficient Forward-Forward DNN Training on Edge Devices with INT8 Precision Autor Ma, Jingxiao, Panda, Priyadarshini, Reda, Sherief

    Vydáno: IEEE 22.06.2025
    “…Backpropagation has been the cornerstone of neural network training for decades, yet its inefficiencies in time and energy consumption limit its suitability…”
    Získat plný text
    Konferenční příspěvek
  19. 19

    SSpMV: A Sparsity-aware SpMV Framework Empowered by Multimodal Machine Learning Autor Lin, Shengle, Liu, Chubo, Ding, Yan, Zhou, Joey Tianyi, Li, Kenli, Yang, Wangdong

    Vydáno: IEEE 22.06.2025
    “…Sparse Matrix-Vector Multiplication (SpMV) is an essential sparse operation in scientific computing and artificial intelligence…”
    Získat plný text
    Konferenční příspěvek
  20. 20

    CascadeHD: Efficient Many-Class Learning Framework Using Hyperdimensional Computing Autor Kim, Yeseong, Kim, Jiseung, Imani, Mohsen

    Vydáno: IEEE 05.12.2021
    “…The brain-inspired hyperdimensional computing (HDC) gains attention as a light-weight and extremely parallelizable learning solution alternative to deep neural networks…”
    Získat plný text
    Konferenční příspěvek