Výsledky vyhledávání - Computing methodologies Machine learning Learning paradigms Supervised learning*
-
1
PrefixRL: Optimization of Parallel Prefix Circuits using Deep Reinforcement Learning
Vydáno: IEEE 05.12.2021Vydáno v 2021 58th ACM/IEEE Design Automation Conference (DAC) (05.12.2021)“…In this work, we present a reinforcement learning (RL) based approach to designing parallel prefix circuits such as adders or priority encoders that are fundamental to high-performance digital design…”
Získat plný text
Konferenční příspěvek -
2
PreSto: An In-Storage Data Preprocessing System for Training Recommendation Models
Vydáno: IEEE 29.06.2024Vydáno v 2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA) (29.06.2024)“…Training recommendation systems (RecSys) faces several challenges as it requires the "data preprocessing" stage to preprocess an ample amount of raw data and…”
Získat plný text
Konferenční příspěvek -
3
Dissecting Global Search: A Simple Yet Effective Method to Boost Individual Discrimination Testing and Repair
ISSN: 1558-1225Vydáno: IEEE 26.04.2025Vydáno v Proceedings / International Conference on Software Engineering (26.04.2025)“…Deep Learning (DL) has achieved significant success in socially critical decision-making applications but often exhibits unfair behaviors, raising social concerns…”
Získat plný text
Konferenční příspěvek -
4
Softermax: Hardware/Software Co-Design of an Efficient Softmax for Transformers
Vydáno: IEEE 05.12.2021Vydáno v 2021 58th ACM/IEEE Design Automation Conference (DAC) (05.12.2021)“…Transformers have transformed the field of natural language processing. Their superior performance is largely attributed to the use of stacked "self-attention"…”
Získat plný text
Konferenční příspěvek -
5
Code Difference Guided Adversarial Example Generation for Deep Code Models
ISSN: 2643-1572Vydáno: IEEE 11.09.2023Vydáno v IEEE/ACM International Conference on Automated Software Engineering : [proceedings] (11.09.2023)“…Adversarial examples are important to test and enhance the robustness of deep code models. As source code is discrete and has to strictly stick to complex…”
Získat plný text
Konferenční příspěvek -
6
Diversity Drives Fairness: Ensemble of Higher Order Mutants for Intersectional Fairness of Machine Learning Software
ISSN: 1558-1225Vydáno: IEEE 26.04.2025Vydáno v Proceedings / International Conference on Software Engineering (26.04.2025)“…Intersectional fairness is a critical requirement for Machine Learning (ML) software, demanding fairness across subgroups defined by multiple protected attributes…”
Získat plný text
Konferenční příspěvek -
7
Muffin: A Framework Toward Multi-Dimension AI Fairness by Uniting Off-the-Shelf Models
Vydáno: United States IEEE 01.07.2023Vydáno v 2023 60th ACM/IEEE Design Automation Conference (DAC) (01.07.2023)“…Model fairness (a.k.a., bias) has become one of the most critical problems in a wide range of AI applications. An unfair model in autonomous driving may cause…”
Získat plný text
Konferenční příspěvek Journal Article -
8
An Extension to Basis-Hypervectors for Learning from Circular Data in Hyperdimensional Computing
Vydáno: IEEE 09.07.2023Vydáno v 2023 60th ACM/IEEE Design Automation Conference (DAC) (09.07.2023)“…Hyperdimensional Computing (HDC) is a computation framework based on random vector spaces, particularly useful for machine learning in resource-constrained environments…”
Získat plný text
Konferenční příspěvek -
9
RL-CCD: Concurrent Clock and Data Optimization using Attention-Based Self-Supervised Reinforcement Learning
Vydáno: IEEE 09.07.2023Vydáno v 2023 60th ACM/IEEE Design Automation Conference (DAC) (09.07.2023)“… In this paper, we overcome this issue by presenting RL-CCD, a Reinforcement Learning (RL) agent that selects endpoints for useful skew prioritization using the proposed EP-GNN, an endpoint-oriented Graph Neural Network (GNN…”
Získat plný text
Konferenční příspěvek -
10
RegHD: Robust and Efficient Regression in Hyper-Dimensional Learning System
Vydáno: IEEE 05.12.2021Vydáno v 2021 58th ACM/IEEE Design Automation Conference (DAC) (05.12.2021)“…Machine learning (ML) algorithms are key enablers to effectively assimilate and extract information from many generated data in the Internet of Things…”
Získat plný text
Konferenční příspěvek -
11
SSpMV: A Sparsity-aware SpMV Framework Empowered by Multimodal Machine Learning
Vydáno: IEEE 22.06.2025Vydáno v 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“…Sparse Matrix-Vector Multiplication (SpMV) is an essential sparse operation in scientific computing and artificial intelligence…”
Získat plný text
Konferenční příspěvek -
12
Late Breaking Results: Less Sense Makes More Sense: In-Sensor Compressive Learning for Efficient Machine Vision
Vydáno: IEEE 22.06.2025Vydáno v 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“…Integrating deep learning and image sensors has significantly transformed machine vision applications…”
Získat plný text
Konferenční příspěvek -
13
UniGenCoder: Merging SEQ2SEQ and SEQ2TREE Paradigms for Unified Code Generation
ISSN: 2832-7632Vydáno: IEEE 27.04.2025Vydáno v IEEE/ACM International Conference on Software Engineering: New Ideas and Emerging Technologies Results (Online) (27.04.2025)“…Deep learning-based code generation has completely transformed the way developers write programs today…”
Získat plný text
Konferenční příspěvek -
14
CascadeHD: Efficient Many-Class Learning Framework Using Hyperdimensional Computing
Vydáno: IEEE 05.12.2021Vydáno v 2021 58th ACM/IEEE Design Automation Conference (DAC) (05.12.2021)“…The brain-inspired hyperdimensional computing (HDC) gains attention as a light-weight and extremely parallelizable learning solution alternative to deep neural networks…”
Získat plný text
Konferenční příspěvek -
15
ZeroBN: Learning Compact Neural Networks For Latency-Critical Edge Systems
Vydáno: IEEE 05.12.2021Vydáno v 2021 58th ACM/IEEE Design Automation Conference (DAC) (05.12.2021)“…Edge devices have been widely adopted to bring deep learning applications onto low power embedded systems, mitigating the privacy and latency issues of accessing cloud servers…”
Získat plný text
Konferenční příspěvek -
16
Toward Individual Fairness Testing with Data Validity
ISSN: 2643-1572Vydáno: ACM 27.10.2024Vydáno v IEEE/ACM International Conference on Automated Software Engineering : [proceedings] (27.10.2024)“…Individual fairness testing (Ift) is a framework to find discriminatory instances within a given classifier. In this paper, we show our idea of a Ift…”
Získat plný text
Konferenční příspěvek -
17
Online Human Activity Recognition using Low-Power Wearable Devices
ISSN: 1558-2434Vydáno: ACM 05.11.2018Vydáno v 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (05.11.2018)“…Human activity recognition (HAR) has attracted significant research interest due to its applications in health monitoring and patient rehabilitation. Recent…”
Získat plný text
Konferenční příspěvek -
18
Fairquant: Certifying and Quantifying Fairness of Deep Neural Networks
ISSN: 1558-1225Vydáno: IEEE 26.04.2025Vydáno v Proceedings / International Conference on Software Engineering (26.04.2025)“…We propose a method for formally certifying and quantifying individual fairness of deep neural networks (DNN). Individual fairness guarantees that any two…”
Získat plný text
Konferenční příspěvek -
19
A Unified DNN Weight Pruning Framework Using Reweighted Optimization Methods
Vydáno: IEEE 05.12.2021Vydáno v 2021 58th ACM/IEEE Design Automation Conference (DAC) (05.12.2021)“…To address the large model size and intensive computation requirement of deep neural networks (DNNs), weight pruning techniques have been proposed and…”
Získat plný text
Konferenční příspěvek -
20
Neurally-Inspired Hyperdimensional Classification for Efficient and Robust Biosignal Processing
ISSN: 1558-2434Vydáno: ACM 29.10.2022Vydáno v 2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD) (29.10.2022)“…The biosignals consist of several sensors that collect time series information. Since time series contain temporal dependencies, they are difficult to process by existing machine learning algorithms…”
Získat plný text
Konferenční příspěvek