Výsledky vyhľadávania - Computing methodologies→Machine learning algorithms*

  1. 1

    Toward Individual Fairness Testing with Data Validity Autor Kitamura, Takashi, Amasaki, Sousuke, Inoue, Jun, Isobe, Yoshinao, Toda, Takahisa

    ISSN: 2643-1572
    Vydavateľské údaje: ACM 27.10.2024
    “…Individual fairness testing (Ift) is a framework to find discriminatory instances within a given classifier. In this paper, we show our idea of a Ift…”
    Získať plný text
    Konferenčný príspevok..
  2. 2

    Muffin: A Framework Toward Multi-Dimension AI Fairness by Uniting Off-the-Shelf Models Autor Sheng, Yi, Yang, Junhuan, Yang, Lei, Shi, Yiyu, Hu, Jingtong, Jiang, Weiwen

    Vydavateľské údaje: United States IEEE 01.07.2023
    “…Model fairness (a.k.a., bias) has become one of the most critical problems in a wide range of AI applications. An unfair model in autonomous driving may cause…”
    Získať plný text
    Konferenčný príspevok.. Journal Article
  3. 3

    DARL: Distributed Reconfigurable Accelerator for Hyperdimensional Reinforcement Learning Autor Chen, Hanning, Issa, Mariam, Ni, Yang, Imani, Mohsen

    ISSN: 1558-2434
    Vydavateľské údaje: ACM 29.10.2022
    “…Reinforcement Learning (RL) is a powerful technology to solve decision-making problems such as robotics control…”
    Získať plný text
    Konferenčný príspevok..
  4. 4

    Llanimation: Llama Driven Gesture Animation Autor Windle, J, Matthews, I, Taylor, S

    ISSN: 0167-7055, 1467-8659
    Vydavateľské údaje: Oxford Blackwell Publishing Ltd 01.12.2024
    Vydané v Computer graphics forum (01.12.2024)
    “…Co‐speech gesturing is an important modality in conversation, providing context and social cues. In character animation, appropriate and synchronised gestures…”
    Získať plný text
    Journal Article
  5. 5

    Lightning Talk: The New Era of Computational Cognitive Intelligence Autor Dutt, Nikil, Donyanavard, Bryan

    Vydavateľské údaje: IEEE 09.07.2023
    “…), and the environment (e.g., context) renders ineffective the classical computational/algorithmic/numerical computing paradigm in dealing with the inherent runtime dynamism and uncertainty faced by emerging systems…”
    Získať plný text
    Konferenčný príspevok..
  6. 6

    A3C-S: Automated Agent Accelerator Co-Search towards Efficient Deep Reinforcement Learning Autor Fu, Yonggan, Zhang, Yongan, Li, Chaojian, Yu, Zhongzhi, Lin, Yingyan

    Vydavateľské údaje: IEEE 05.12.2021
    “…Driven by the explosive interest in applying deep reinforcement learning (DRL) agents to numerous real-time control and decision-making applications…”
    Získať plný text
    Konferenčný príspevok..
  7. 7

    Cocktail: Learn a Better Neural Network Controller from Multiple Experts via Adaptive Mixing and Robust Distillation Autor Wang, Yixuan, Huang, Chao, Wang, Zhilu, Xu, Shichao, Wang, Zhaoran, Zhu, Qi

    Vydavateľské údaje: IEEE 05.12.2021
    “…Neural networks are being increasingly applied to control and decision making for learning-enabled cyber-physical systems (LE-CPSs…”
    Získať plný text
    Konferenčný príspevok..
  8. 8

    Benchmark Movement Data Set for Trust Assessment in Human Robot Collaboration Autor Rehm, Matthias, Hald, Kasper, Pontikis, Ioannis

    Vydavateľské údaje: ACM 11.03.2024
    “…* Human-centered computing → Human computer interaction (HCI); * Computing methodologiesMachine learning…”
    Získať plný text
    Konferenčný príspevok..
  9. 9

    GARL: Genetic Algorithm-Augmented Reinforcement Learning to Detect Violations in Marker-Based Autonomous Landing Systems Autor Liang, Linfeng, Deng, Yao, Morton, Kye, Kallinen, Valtteri, James, Alice, Seth, Avishkar, Kuantama, Endrowednes, Mukhopadhyay, Subhas, Han, Richard, Zheng, Xi

    ISSN: 1558-1225
    Vydavateľské údaje: IEEE 26.04.2025
    “… To address these issues, we introduce GARL, a framework combining a genetic algorithm (GA) and reinforcement learning (RL…”
    Získať plný text
    Konferenčný príspevok..
  10. 10

    Resilient linear classification: an approach to deal with attacks on training data Autor Park, Sangdon, Weimer, James, Lee, Insup

    ISBN: 9781450349659, 145034965X
    Vydavateľské údaje: New York, NY, USA ACM 18.04.2017
    “… However, if the training data is maliciously altered by attackers, the effect of these attacks on the learning algorithms underpinning data-driven CPS have yet to be considered…”
    Získať plný text
    Konferenčný príspevok..
  11. 11

    Making Fair ML Software using Trustworthy Explanation Autor Chakraborty, Joymallya, Peng, Kewen, Menzies, Tim

    ISSN: 2643-1572
    Vydavateľské údaje: ACM 01.09.2020
    “…Machine learning software is being used in many applications (finance, hiring, admissions, criminal justice…”
    Získať plný text
    Konferenčný príspevok..
  12. 12

    SpikeDyn: A Framework for Energy-Efficient Spiking Neural Networks with Continual and Unsupervised Learning Capabilities in Dynamic Environments Autor Putra, Rachmad Vidya Wicaksana, Shafique, Muhammad

    Vydavateľské údaje: IEEE 05.12.2021
    “…Spiking Neural Networks (SNNs) bear the potential of efficient unsupervised and continual learning capabilities because of their biological plausibility, but their complexity still poses a serious research challenge to enable…”
    Získať plný text
    Konferenčný príspevok..
  13. 13

    Preference-Conditioned Language-Guided Abstraction Autor Peng, Andi, Bobu, Andreea, Li, Belinda Z., Sumers, Theodore R., Sucholutsky, Ilia, Kumar, Nishanth, Griffiths, Thomas L., Shah, Julie A.

    Vydavateľské údaje: ACM 11.03.2024
    “…Learning from demonstrations is a common way for users to teach robots, but it is prone to spurious feature correlations…”
    Získať plný text
    Konferenčný príspevok..
  14. 14

    DistHD: A Learner-Aware Dynamic Encoding Method for Hyperdimensional Classification Autor Wang, Junyao, Huang, Sitao, Imani, Mohsen

    Vydavateľské údaje: IEEE 09.07.2023
    “… Many applications exploit machine learning methodology to dissect collected data, and edge computing was introduced to enhance the efficiency and scalability in resource-constrained computing environments…”
    Získať plný text
    Konferenčný príspevok..
  15. 15

    Towards Scalable and Efficient Spiking Reinforcement Learning for Continuous Control Tasks Autor Tahmid, Tokey, Gates, Mark, Luszczek, Piotr, Schuman, Catherine

    Vydavateľské údaje: IEEE 30.07.2024
    “… Even though SNNs are efficient by their design and structure, they lack many of the optimizations known from deep reinforcement learning (DeepRL) algorithms…”
    Získať plný text
    Konferenčný príspevok..
  16. 16

    Analyzing and Improving Fault Tolerance of Learning-Based Navigation Systems Autor Wan, Zishen, Anwar, Aqeel, Hsiao, Yu-Shun, Jia, Tianyu, Reddi, Vijay Janapa, Raychowdhury, Arijit

    Vydavateľské údaje: IEEE 05.12.2021
    “…Learning-based navigation systems are widely used in autonomous applications, such as robotics, unmanned vehicles and drones…”
    Získať plný text
    Konferenčný príspevok..
  17. 17

    Stellaris: Staleness-Aware Distributed Reinforcement Learning with Serverless Computing Autor Yu, Hanfei, Wang, Hao, Tiwari, Devesh, Li, Jian, Park, Seung-Jong

    Vydavateľské údaje: IEEE 17.11.2024
    “… This paper proposes Stellaris, the first to introduce a generic asynchronous learning paradigm for distributed DRL training with serverless computing…”
    Získať plný text
    Konferenčný príspevok..
  18. 18

    ADVeRL-ELF: ADVersarial ELF Malware Generation using Reinforcement Learning Autor Ravi, Akshara, Chaturvedi, Vivek, Shafique, Muhammad

    Vydavateľské údaje: IEEE 22.06.2025
    “…Deep learning models are now pervasive in the malware detection domain owing to their high accuracy and performance efficiency…”
    Získať plný text
    Konferenčný príspevok..
  19. 19

    FF-INT8: Efficient Forward-Forward DNN Training on Edge Devices with INT8 Precision Autor Ma, Jingxiao, Panda, Priyadarshini, Reda, Sherief

    Vydavateľské údaje: IEEE 22.06.2025
    “…Backpropagation has been the cornerstone of neural network training for decades, yet its inefficiencies in time and energy consumption limit its suitability…”
    Získať plný text
    Konferenčný príspevok..
  20. 20

    On the Mistaken Assumption of Interchangeable Deep Reinforcement Learning Implementations Autor Hundal, Rajdeep Singh, Xiao, Yan, Cao, Xiaochun, Dong, Jin Song, Rigger, Manuel

    ISSN: 1558-1225
    Vydavateľské údaje: IEEE 26.04.2025
    “…Deep Reinforcement Learning (DRL) is a paradigm of artificial intelligence where an agent uses a neural network to learn which actions to take in a given environment…”
    Získať plný text
    Konferenčný príspevok..