Výsledky vyhľadávania - Computing methodologies→Machine learning algorithms*
-
1
Toward Individual Fairness Testing with Data Validity
ISSN: 2643-1572Vydavateľské údaje: ACM 27.10.2024Vydané v IEEE/ACM International Conference on Automated Software Engineering : [proceedings] (27.10.2024)“…Individual fairness testing (Ift) is a framework to find discriminatory instances within a given classifier. In this paper, we show our idea of a Ift…”
Získať plný text
Konferenčný príspevok.. -
2
Muffin: A Framework Toward Multi-Dimension AI Fairness by Uniting Off-the-Shelf Models
Vydavateľské údaje: United States IEEE 01.07.2023Vydané v 2023 60th ACM/IEEE Design Automation Conference (DAC) (01.07.2023)“…Model fairness (a.k.a., bias) has become one of the most critical problems in a wide range of AI applications. An unfair model in autonomous driving may cause…”
Získať plný text
Konferenčný príspevok.. Journal Article -
3
DARL: Distributed Reconfigurable Accelerator for Hyperdimensional Reinforcement Learning
ISSN: 1558-2434Vydavateľské údaje: ACM 29.10.2022Vydané v 2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD) (29.10.2022)“…Reinforcement Learning (RL) is a powerful technology to solve decision-making problems such as robotics control…”
Získať plný text
Konferenčný príspevok.. -
4
Llanimation: Llama Driven Gesture Animation
ISSN: 0167-7055, 1467-8659Vydavateľské údaje: Oxford Blackwell Publishing Ltd 01.12.2024Vydané v Computer graphics forum (01.12.2024)“…Co‐speech gesturing is an important modality in conversation, providing context and social cues. In character animation, appropriate and synchronised gestures…”
Získať plný text
Journal Article -
5
Lightning Talk: The New Era of Computational Cognitive Intelligence
Vydavateľské údaje: IEEE 09.07.2023Vydané v 2023 60th ACM/IEEE Design Automation Conference (DAC) (09.07.2023)“…), and the environment (e.g., context) renders ineffective the classical computational/algorithmic/numerical computing paradigm in dealing with the inherent runtime dynamism and uncertainty faced by emerging systems…”
Získať plný text
Konferenčný príspevok.. -
6
A3C-S: Automated Agent Accelerator Co-Search towards Efficient Deep Reinforcement Learning
Vydavateľské údaje: IEEE 05.12.2021Vydané v 2021 58th ACM/IEEE Design Automation Conference (DAC) (05.12.2021)“…Driven by the explosive interest in applying deep reinforcement learning (DRL) agents to numerous real-time control and decision-making applications…”
Získať plný text
Konferenčný príspevok.. -
7
Cocktail: Learn a Better Neural Network Controller from Multiple Experts via Adaptive Mixing and Robust Distillation
Vydavateľské údaje: IEEE 05.12.2021Vydané v 2021 58th ACM/IEEE Design Automation Conference (DAC) (05.12.2021)“…Neural networks are being increasingly applied to control and decision making for learning-enabled cyber-physical systems (LE-CPSs…”
Získať plný text
Konferenčný príspevok.. -
8
Benchmark Movement Data Set for Trust Assessment in Human Robot Collaboration
Vydavateľské údaje: ACM 11.03.2024Vydané v 2024 19th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (11.03.2024)“…* Human-centered computing → Human computer interaction (HCI); * Computing methodologies → Machine learning…”
Získať plný text
Konferenčný príspevok.. -
9
GARL: Genetic Algorithm-Augmented Reinforcement Learning to Detect Violations in Marker-Based Autonomous Landing Systems
ISSN: 1558-1225Vydavateľské údaje: IEEE 26.04.2025Vydané v Proceedings / International Conference on Software Engineering (26.04.2025)“… To address these issues, we introduce GARL, a framework combining a genetic algorithm (GA) and reinforcement learning (RL…”
Získať plný text
Konferenčný príspevok.. -
10
Resilient linear classification: an approach to deal with attacks on training data
ISBN: 9781450349659, 145034965XVydavateľské údaje: New York, NY, USA ACM 18.04.2017Vydané v 2017 ACM IEEE 8th International Conference on Cyber Physical Systems (ICCPS) (18.04.2017)“… However, if the training data is maliciously altered by attackers, the effect of these attacks on the learning algorithms underpinning data-driven CPS have yet to be considered…”
Získať plný text
Konferenčný príspevok.. -
11
Making Fair ML Software using Trustworthy Explanation
ISSN: 2643-1572Vydavateľské údaje: ACM 01.09.2020Vydané v 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE) (01.09.2020)“…Machine learning software is being used in many applications (finance, hiring, admissions, criminal justice…”
Získať plný text
Konferenčný príspevok.. -
12
SpikeDyn: A Framework for Energy-Efficient Spiking Neural Networks with Continual and Unsupervised Learning Capabilities in Dynamic Environments
Vydavateľské údaje: IEEE 05.12.2021Vydané v 2021 58th ACM/IEEE Design Automation Conference (DAC) (05.12.2021)“…Spiking Neural Networks (SNNs) bear the potential of efficient unsupervised and continual learning capabilities because of their biological plausibility, but their complexity still poses a serious research challenge to enable…”
Získať plný text
Konferenčný príspevok.. -
13
Preference-Conditioned Language-Guided Abstraction
Vydavateľské údaje: ACM 11.03.2024Vydané v 2024 19th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (11.03.2024)“…Learning from demonstrations is a common way for users to teach robots, but it is prone to spurious feature correlations…”
Získať plný text
Konferenčný príspevok.. -
14
DistHD: A Learner-Aware Dynamic Encoding Method for Hyperdimensional Classification
Vydavateľské údaje: IEEE 09.07.2023Vydané v 2023 60th ACM/IEEE Design Automation Conference (DAC) (09.07.2023)“… Many applications exploit machine learning methodology to dissect collected data, and edge computing was introduced to enhance the efficiency and scalability in resource-constrained computing environments…”
Získať plný text
Konferenčný príspevok.. -
15
Towards Scalable and Efficient Spiking Reinforcement Learning for Continuous Control Tasks
Vydavateľské údaje: IEEE 30.07.2024Vydané v 2024 International Conference on Neuromorphic Systems (ICONS) (30.07.2024)“… Even though SNNs are efficient by their design and structure, they lack many of the optimizations known from deep reinforcement learning (DeepRL) algorithms…”
Získať plný text
Konferenčný príspevok.. -
16
Analyzing and Improving Fault Tolerance of Learning-Based Navigation Systems
Vydavateľské údaje: IEEE 05.12.2021Vydané v 2021 58th ACM/IEEE Design Automation Conference (DAC) (05.12.2021)“…Learning-based navigation systems are widely used in autonomous applications, such as robotics, unmanned vehicles and drones…”
Získať plný text
Konferenčný príspevok.. -
17
Stellaris: Staleness-Aware Distributed Reinforcement Learning with Serverless Computing
Vydavateľské údaje: IEEE 17.11.2024Vydané v SC24: International Conference for High Performance Computing, Networking, Storage and Analysis (17.11.2024)“… This paper proposes Stellaris, the first to introduce a generic asynchronous learning paradigm for distributed DRL training with serverless computing…”
Získať plný text
Konferenčný príspevok.. -
18
ADVeRL-ELF: ADVersarial ELF Malware Generation using Reinforcement Learning
Vydavateľské údaje: IEEE 22.06.2025Vydané v 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“…Deep learning models are now pervasive in the malware detection domain owing to their high accuracy and performance efficiency…”
Získať plný text
Konferenčný príspevok.. -
19
FF-INT8: Efficient Forward-Forward DNN Training on Edge Devices with INT8 Precision
Vydavateľské údaje: IEEE 22.06.2025Vydané v 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“…Backpropagation has been the cornerstone of neural network training for decades, yet its inefficiencies in time and energy consumption limit its suitability…”
Získať plný text
Konferenčný príspevok.. -
20
On the Mistaken Assumption of Interchangeable Deep Reinforcement Learning Implementations
ISSN: 1558-1225Vydavateľské údaje: IEEE 26.04.2025Vydané v Proceedings / International Conference on Software Engineering (26.04.2025)“…Deep Reinforcement Learning (DRL) is a paradigm of artificial intelligence where an agent uses a neural network to learn which actions to take in a given environment…”
Získať plný text
Konferenčný príspevok..

