Výsledky vyhledávání - Computer systems organization Embedded and cyber-physical systems Embedded systems

Upřesnit hledání
  1. 1

    Hybrid brain–computer interface for biomedical cyber-physical system application using wireless embedded EEG systems Autor Chai, Rifai, Naik, Ganesh R., Ling, Sai Ho, Nguyen, Hung T.

    ISSN: 1475-925X, 1475-925X
    Vydáno: London BioMed Central 07.01.2017
    Vydáno v Biomedical engineering online (07.01.2017)
    “…Background One of the key challenges of the biomedical cyber-physical system is to combine cognitive neuroscience with the integration of physical systems to assist people with disabilities…”
    Získat plný text
    Journal Article
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7

    Analyzing and Improving Fault Tolerance of Learning-Based Navigation Systems Autor Wan, Zishen, Anwar, Aqeel, Hsiao, Yu-Shun, Jia, Tianyu, Reddi, Vijay Janapa, Raychowdhury, Arijit

    Vydáno: IEEE 05.12.2021
    “…Learning-based navigation systems are widely used in autonomous applications, such as robotics, unmanned vehicles and drones…”
    Získat plný text
    Konferenční příspěvek
  8. 8

    Control Variate Approximation for DNN Accelerators Autor Zervakis, Georgios, Spantidi, Ourania, Anagnostopoulos, Iraklis, Amrouch, Hussam, Henkel, Jorg

    Vydáno: IEEE 05.12.2021
    “…In this work, we introduce a control variate approximation technique for low error approximate Deep Neural Network (DNN) accelerators. The control variate…”
    Získat plný text
    Konferenční příspěvek
  9. 9

    Reinforcement Learning-Assisted Management for Convertible SSDs Autor Wei, Qian, Li, Yi, Jia, Zhiping, Zhao, Mengying, Shen, Zhaoyan, Li, Bingzhe

    Vydáno: IEEE 09.07.2023
    “…Convertible SSDs, which allow flash cells to convert between different types of flash cells (e.g., SLC/MLC/TLC/QLC), are designed for achieving both high…”
    Získat plný text
    Konferenční příspěvek
  10. 10

    DyREM: Dynamically Mitigating Quantum Readout Error with Embedded Accelerator Autor Zhou, Kaiwen, Lu, Liqiang, Zhang, Hanyu, Xiang, Debin, Tao, Chenning, Zhao, Xinkui, Zheng, Size, Yin, Jianwei

    Vydáno: IEEE 22.06.2025
    “… In this paper, we propose DyREM, a software-hardware codesign approach that mitigates readout errors with an embedded accelerator…”
    Získat plný text
    Konferenční příspěvek
  11. 11

    Dancing along Battery: Enabling Transformer with Run-time Reconfigurability on Mobile Devices Autor Song, Yuhong, Jiang, Weiwen, Li, Bingbing, Qi, Panjie, Zhuge, Qingfeng, Sha, Edwin Hsing-Mean, Dasgupta, Sakyasingha, Shi, Yiyu, Ding, Caiwen

    Vydáno: IEEE 05.12.2021
    “…A pruning-based AutoML framework for run-time reconfigurability, namely RT 3 , is proposed in this work. This enables Transformer-based large Natural Language…”
    Získat plný text
    Konferenční příspěvek
  12. 12

    PowerPruning: Selecting Weights and Activations for Power-Efficient Neural Network Acceleration Autor Petri, Richard, Zhang, Grace Li, Chen, Yiran, Schlichtmann, Ulf, Li, Bing

    Vydáno: IEEE 09.07.2023
    “…Deep neural networks (DNNs) have been successfully applied in various fields. A major challenge of deploying DNNs, especially on edge devices, is power…”
    Získat plný text
    Konferenční příspěvek
  13. 13
  14. 14

    KLiNQ: Knowledge Distillation-Assisted Lightweight Neural Network for Qubit Readout on FPGA Autor Guo, Xiaorang, Bunarjyan, Tigran, Liu, Dai, Lienhard, Benjamin, Schulz, Martin

    Vydáno: IEEE 22.06.2025
    “…Superconducting qubits are among the most promising candidates for building quantum information processors. Yet, they are often limited by slow and error-prone…”
    Získat plný text
    Konferenční příspěvek
  15. 15

    Mirage: An RNS-Based Photonic Accelerator for DNN Training Autor Demirkiran, Cansu, Yang, Guowei, Bunandar, Darius, Joshi, Ajay

    Vydáno: IEEE 29.06.2024
    “… and the analog noise inherent in photonic hardware. This paper proposes Mirage, a photonic DNN training accelerator that overcomes the precision challenges in photonic hardware using the Residue Number System (RNS…”
    Získat plný text
    Konferenční příspěvek
  16. 16

    MOSAIC: Heterogeneity-, Communication-, and Constraint-Aware Model Slicing and Execution for Accurate and Efficient Inference Autor Han, Myeonggyun, Hyun, Jihoon, Park, Seongbeom, Park, Jinsu, Baek, Woongki

    ISSN: 2641-7936
    Vydáno: IEEE 01.09.2019
    “…Heterogeneous embedded systems have surfaced as a promising solution for accurate and efficient deep-learning inference on mobile devices…”
    Získat plný text
    Konferenční příspěvek
  17. 17

    DeepPUFSCA: Deep learning for Physical Unclonable Function attack based on Side Channel Analysis support Autor Doan, Ngoc Phu, Pham, Tuan Dung, Zhang, Zichi, Tran, Viet Hung, Miskelly, Jack, Vandierendonck, Hans, Hoang, Anh Tuan, O'Neill, Maire, Mai, Thai Son

    Vydáno: IEEE 22.06.2025
    “…Physical Unclonable Function (PUF) poses a vulnerability that it could be imitated by machine learning attacks and side channel attacks, which break its…”
    Získat plný text
    Konferenční příspěvek
  18. 18

    LA-MTL: Latency-Aware Automated Multi-Task Learning Autor Sampath, Shambhavi Balamuthu, Sawani, Sami, Thoma, Moritz, Frickenstein, Lukas, Mori, Pierpaolo, Fasfous, Nael, Vemparala, Manoj Rohit, Frickenstein, Alexander, Schlichtmann, Ulf, Passerone, Claudio, Stechele, Walter

    Vydáno: IEEE 22.06.2025
    “… This is particularly attractive for real-time applications that require simultaneous execution of multiple workloads in resource-constrained embedded environments…”
    Získat plný text
    Konferenční příspěvek
  19. 19

    OmniBoost: Boosting Throughput of Heterogeneous Embedded Devices under Multi-DNN Workload Autor Karatzas, Andreas, Anagnostopoulos, Iraklis

    Vydáno: IEEE 09.07.2023
    “… Equipped with a diverse set of accelerators, newer embedded system present architectural heterogeneity, which current run-time controllers are unable to fully utilize…”
    Získat plný text
    Konferenční příspěvek
  20. 20

    Recommending Pre-Trained Models for IoT Devices Autor Patil, Parth V., Jiang, Wenxin, Peng, Huiyun, Lugo, Daniel, Kalu, Kelechi G., LeBlanc, Josh, Smith, Lawrence, Heo, Hyeonwoo, Aou, Nathanael, Davis, James C.

    ISSN: 2832-7632
    Vydáno: IEEE 27.04.2025
    “…The availability of pre-trained models (PTMs) has enabled faster deployment of machine learning across applications by reducing the need for extensive…”
    Získat plný text
    Konferenční příspěvek