Suchergebnisse - Computational Learning Theory and Optimization

  1. 1

    An in-principle super-polynomial quantum advantage for approximating combinatorial optimization problems via computational learning theory von Pirnay, Niklas, Ulitzsch, Vincent, Wilde, Frederik, Eisert, Jens, Seifert, Jean-Pierre

    ISSN: 2375-2548, 2375-2548
    Veröffentlicht: United States 15.03.2024
    Veröffentlicht in Science advances (15.03.2024)
    “… In this work, by resorting to computational learning theory and cryptographic notions, we give a fully constructive proof that quantum computers feature a super-polynomial advantage over classical …”
    Volltext
    Journal Article
  2. 2
  3. 3

    An in-principle super-polynomial quantum advantage for approximating combinatorial optimization problems via computational learning theory von Pirnay, Niklas, Ulitzsch, Vincent, Wilde, Frederik, Eisert, Jens, Seifert, Jean-Pierre

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 13.02.2024
    Veröffentlicht in arXiv.org (13.02.2024)
    “… In this work, by resorting to computational learning theory and cryptographic notions, we prove that quantum computers feature an in-principle super-polynomial advantage over classical computers …”
    Volltext
    Paper
  4. 4

    Computational optimization of associative learning experiments von Melinscak, Filip, Bach, Dominik R.

    ISSN: 1553-7358, 1553-734X, 1553-7358
    Veröffentlicht: United States Public Library of Science 01.01.2020
    Veröffentlicht in PLoS computational biology (01.01.2020)
    “… This challenge is well exemplified in associative learning research. Associative learning theory has a rich tradition of computational modeling, resulting in a growing space …”
    Volltext
    Journal Article
  5. 5

    The Integration of the RBL-STEM Learning Model and Graph Theory in Solving Transportation and Logistics Optimization Problems to Enhance Students' Computational Thinking Skills von Marsidi, Marsidi

    ISSN: 2337-9421, 2581-1290
    Veröffentlicht: 06.04.2025
    “… Abstract This study aims to integrate the Research-Based Learning (RBL) model with the STEM approach and graph theory in solving transportation and logistics optimization problems to enhance students …”
    Volltext
    Journal Article
  6. 6

    Computational approaches to fMRI analysis von Cohen, Jonathan D, Daw, Nathaniel, Engelhardt, Barbara, Hasson, Uri, Li, Kai, Niv, Yael, Norman, Kenneth A, Pillow, Jonathan, Ramadge, Peter J, Turk-Browne, Nicholas B, Willke, Theodore L

    ISSN: 1097-6256, 1546-1726, 1546-1726
    Veröffentlicht: New York Nature Publishing Group US 01.03.2017
    Veröffentlicht in Nature neuroscience (01.03.2017)
    “… and increasingly large fMRI datasets. In this paper, the authors review the cutting edge of such computational analyses and discuss future opportunities and challenges …”
    Volltext
    Journal Article
  7. 7

    Molecular free energy optimization on a computational graph von Cao, Xiaoyong, Tian, Pu

    ISSN: 2046-2069, 2046-2069
    Veröffentlicht: England Royal Society of Chemistry 06.04.2021
    Veröffentlicht in RSC advances (06.04.2021)
    “… Computational graph underlies major artificial intelligence platforms and is proven to facilitate training, optimization and learning …”
    Volltext
    Journal Article
  8. 8

    Machine Learning Orchestrating the Materials Discovery and Performance Optimization of Redox Flow Battery von Tang, Lina, Leung, Puiki, Xu, Qian, Flox, Cristina

    ISSN: 2196-0216, 2196-0216
    Veröffentlicht: Weinheim John Wiley & Sons, Inc 01.08.2024
    Veröffentlicht in ChemElectroChem (01.08.2024)
    “… , active learning and various generative models. The collaborative integration of ML with computational techniques and experimental methods, anchored in experimentally validated Density Functional Theory (DFT …”
    Volltext
    Journal Article
  9. 9

    Uncertainty Based Machine Learning-DFT Hybrid Framework for Accelerating Geometry Optimization von Singh, Akksay, Wang, Jiaqi, Henkelman, Graeme, Li, Lei

    ISSN: 1549-9626, 1549-9626
    Veröffentlicht: United States 26.11.2024
    Veröffentlicht in Journal of chemical theory and computation (26.11.2024)
    “… Here, we present a delta method-based neural network-density functional theory (DFT) hybrid optimizer to improve the computational efficiency of geometry optimization …”
    Weitere Angaben
    Journal Article
  10. 10

    Active Learning‐Assisted Exploration of [PO40Mo12]3− for Alzheimer's Therapy Insights von Fang, Lincan, Peng, Ruoxue, Xia, Luping, Zhuang, Gui‐lin

    ISSN: 2198-3844, 2198-3844
    Veröffentlicht: Germany John Wiley & Sons, Inc 01.11.2025
    Veröffentlicht in Advanced science (01.11.2025)
    “… ‐learning Bayesian Optimization (BO) and density functional theory (DFT) is employed to explore low …”
    Volltext
    Journal Article
  11. 11

    Computational Optimizations for Machine Learning

    ISBN: 3036531874, 3036531866, 9783036531861, 9783036531878
    Veröffentlicht: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
    “… “Computational Optimizations for Machine Learning” of the MDPI journal Mathematics, which cover a wide range of topics connected to the theory and applications of machine learning, neural networks and artificial intelligence …”
    Volltext
    E-Book
  12. 12

    Meta-Learning With Differentiable Convex Optimization von Lee, Kwonjoon, Maji, Subhransu, Ravichandran, Avinash, Soatto, Stefano

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2019
    “… Many meta-learning approaches for few-shot learning rely on simple base learners such as nearest-neighbor classifiers …”
    Volltext
    Tagungsbericht
  13. 13

    Accelerating CALYPSO structure prediction by data-driven learning of a potential energy surface von Tong, Qunchao, Xue, Lantian, Lv, Jian, Wang, Yanchao, Ma, Yanming

    ISSN: 1364-5498, 1364-5498
    Veröffentlicht: England 26.10.2018
    Veröffentlicht in Faraday discussions (26.10.2018)
    “… However, they are generally restricted to small systems owing to the heavy computational cost of the underlying density functional theory (DFT …”
    Weitere Angaben
    Journal Article
  14. 14

    Machine Learning for Computational Heterogeneous Catalysis von Schlexer Lamoureux, Philomena, Winther, Kirsten T., Garrido Torres, Jose Antonio, Streibel, Verena, Zhao, Meng, Bajdich, Michal, Abild‐Pedersen, Frank, Bligaard, Thomas

    ISSN: 1867-3880, 1867-3899
    Veröffentlicht: Weinheim Wiley Subscription Services, Inc 21.08.2019
    Veröffentlicht in ChemCatChem (21.08.2019)
    “… – from economics to physics. In the area of materials science and computational heterogeneous catalysis, this revolution has led to the development of scientific data repositories, as well as data mining and machine learning …”
    Volltext
    Journal Article
  15. 15

    Advanced Computational Methods for Modeling, Prediction and Optimization—A Review von Krzywanski, Jaroslaw, Sosnowski, Marcin, Grabowska, Karolina, Zylka, Anna, Lasek, Lukasz, Kijo-Kleczkowska, Agnieszka

    ISSN: 1996-1944, 1996-1944
    Veröffentlicht: Switzerland MDPI AG 16.07.2024
    Veröffentlicht in Materials (16.07.2024)
    “… This paper provides a comprehensive review of recent advancements in computational methods for modeling, simulation, and optimization of complex systems in materials engineering, mechanical …”
    Volltext
    Journal Article
  16. 16

    In-depth exploration of optoelectronic and PV characteristics in lead-free Ca3BiF3 perovskite solar cells: numerical simulations and machine learning approaches von Biswas, Bipul Chandra, Shimul, Asadul Islam, Alshihri, Abdulaziz A., El‑Rayyes, Ali, Khan, Mohd Taukeer, Rahman, Md. Azizur

    ISSN: 2520-8160, 2520-8179
    Veröffentlicht: Cham Springer International Publishing 01.12.2026
    “… This study presents an integrated computational framework that combines density functional theory (DFT …”
    Volltext
    Journal Article
  17. 17

    Reduction of computational error by optimizing SVR kernel coefficients to simulate concrete compressive strength through the use of a human learning optimization algorithm von Huang, Jiandong, Sun, Yuantian, Zhang, Junfei

    ISSN: 0177-0667, 1435-5663
    Veröffentlicht: London Springer London 01.08.2022
    Veröffentlicht in Engineering with computers (01.08.2022)
    “… to predict and optimize the compressive strength of concrete samples. For optimization purposes, this study used a human learning optimization (HLO …”
    Volltext
    Journal Article
  18. 18

    Computational Discovery of Transition-metal Complexes: From High-throughput Screening to Machine Learning von Nandy, Aditya, Duan, Chenru, Taylor, Michael G, Liu, Fang, Steeves, Adam H, Kulik, Heather J

    ISSN: 1520-6890, 1520-6890
    Veröffentlicht: United States 25.08.2021
    Veröffentlicht in Chemical reviews (25.08.2021)
    “… The review will cover the development, promise, and limitations of "traditional" computational chemistry (i.e …”
    Weitere Angaben
    Journal Article
  19. 19

    Expensive Multiobjective Optimization by Relation Learning and Prediction von Hao, Hao, Zhou, Aimin, Qian, Hong, Zhang, Hu

    ISSN: 1089-778X, 1941-0026
    Veröffentlicht: New York IEEE 01.10.2022
    Veröffentlicht in IEEE transactions on evolutionary computation (01.10.2022)
    “… Expensive multiobjective optimization problems pose great challenges to evolutionary algorithms due to their costly evaluation …”
    Volltext
    Journal Article
  20. 20

    Min-Max Cost Optimization for Efficient Hierarchical Federated Learning in Wireless Edge Networks von Feng, Jie, Liu, Lei, Pei, Qingqi, Li, Keqin

    ISSN: 1045-9219, 1558-2183
    Veröffentlicht: New York IEEE 01.11.2022
    “… Federated learning is a distributed machine learning technology that can protect users' data privacy, so it has attracted more and more attention in the industry and academia …”
    Volltext
    Journal Article