Suchergebnisse - Classificació AMS::39 Difference and functional equations::39A Difference equations
Andere Suchmöglichkeiten:
- Classificació AMS 39 Difference and functional equations 39A Difference equations »
-
1
Bifurcation of 2-periodic orbits from non-hyperbolic fixed points
ISSN: 0022-247X, 1096-0813Veröffentlicht: Elsevier Inc 01.01.2018Veröffentlicht in Journal of mathematical analysis and applications (01.01.2018)“… We introduce the concept of 2-cyclicity for families of one-dimensional maps with a non-hyperbolic fixed point by analogy to the cyclicity for families of …”
Volltext
Journal Article Verlag -
2
Boundary value problems for second order linear difference equations: application to the computation of the inverse of generalized Jacobi matrices
ISSN: 1578-7303, 1579-1505Veröffentlicht: Cham Springer International Publishing 01.10.2019Veröffentlicht in Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas (01.10.2019)“… We have named generalized Jacobi matrices to those that are practically tridiagonal, except for the two final entries and the two first entries of its first …”
Volltext
Journal Article Verlag -
3
Non-integrability of measure preserving maps via Lie symmetries
ISSN: 0022-0396, 1090-2732Veröffentlicht: Elsevier Inc 15.11.2015Veröffentlicht in Journal of Differential Equations (15.11.2015)“… The obtained criterion can be applied to prove the local non-integrability of the Cohen map and of several rational maps coming from second order difference equations …”
Volltext
Journal Article Verlag -
4
Floquet theory for second order linear homogeneous difference equations
ISSN: 1023-6198, 1563-5120Veröffentlicht: Abingdon Taylor & Francis 03.03.2016Veröffentlicht in Journal of difference equations and applications (03.03.2016)“… In this paper we provide a version of the Floquet's theorem to be applied to any second order difference equations with quasi-periodic coefficients …”
Volltext
Journal Article Verlag -
5
Lie symmetries of birational maps preserving genus 0 fibrations
ISSN: 0022-247X, 1096-0813Veröffentlicht: Elsevier Inc 01.12.2015Veröffentlicht in Journal of mathematical analysis and applications (01.12.2015)“… We prove that any planar birational integrable map, which preserves a fibration given by genus 0 curves has a Lie symmetry and some associated invariant …”
Volltext
Journal Article Verlag -
6
Combinatorial Recurrences and Linear Difference Equations
ISSN: 1571-0653, 1571-0653Veröffentlicht: Elsevier B.V 01.10.2016Veröffentlicht in Electronic notes in discrete mathematics (01.10.2016)“… In this work we introduce the triangular arrays of depth greater than 1 given by linear recurrences, that generalize some well-known recurrences that appear in …”
Volltext
Journal Article Verlag -
7
On 2- and 3-periodic Lyness difference equations
ISSN: 1023-6198, 1563-5120Veröffentlicht: Abingdon Taylor & Francis Group 01.05.2012Veröffentlicht in Journal of difference equations and applications (01.05.2012)“… We describe the sequences given by the non-autonomous second-order Lyness difference equations , where is either a 2-periodic or a 3-periodic sequence of positive values and the initial conditions are also positive …”
Volltext
Journal Article Verlag -
8
Basin of attraction of triangular maps with applications
ISSN: 1023-6198, 1563-5120Veröffentlicht: Abingdon Taylor & Francis 04.03.2014Veröffentlicht in Journal of difference equations and applications (04.03.2014)“… We consider planar triangular maps . These maps preserve the fibration of the plane given by . We assume that there exists an invariant attracting fibre for …”
Volltext
Journal Article Verlag -
9
Integrability and non-integrability of periodic non-autonomous Lyness recurrences
ISSN: 1468-9367, 1468-9375Veröffentlicht: Taylor & Francis Group 01.12.2013Veröffentlicht in Dynamical systems (London, England) (01.12.2013)“… This paper studies non-autonomous Lyness-type recurrences of the form x n+2 = (a n + x n+1 )/x n , where {a n } is a k-periodic sequence of positive numbers …”
Volltext
Journal Article Verlag