Výsledky vyhledávání - CCS Concepts: Computing methodologies → Distributed computing methodologies*

  • Zobrazuji výsledky 1 - 5 z 5
Upřesnit hledání
  1. 1

    Context-Aware Convolutional Neural Network over Distributed System in Collaborative Computing Autor Choi, Jinhang, Hakimi, Zeinab, Shin, Philip W, Sampson, Jack, Narayanan, Vijaykrishnan

    Vydáno: ACM 01.06.2019
    “…As the computing power of end-point devices grows, there has been interest in developing distributed deep neural networks specifically for hierarchical inference deployments on multi-sensor systems…”
    Získat plný text
    Konferenční příspěvek
  2. 2

    BenchCloud: A Platform for Scalable Performance Benchmarking Autor Beyer, Dirk, Chien, Po-Chun, Jankola, Marek

    ISSN: 2643-1572
    Vydáno: ACM 27.10.2024
    “… This paper describes BenchCloud, a solution for elastic and scalable job distribution across hundreds of nodes, enabling large-scale experiments on distributed and heterogeneous computing environments…”
    Získat plný text
    Konferenční příspěvek
  3. 3

    NEPTUNE: Network- and GPU-aware Management of Serverless Functions at the Edge Autor Baresi, Luciano, Hu, Davide Yi Xian, Quattrocchi, Giovanni, Terracciano, Luca

    ISSN: 2157-2321
    Vydáno: ACM 01.05.2022
    “… Multi-access Edge Computing (MEC) has been proposed as the reference architecture for executing applications closer to users and reducing latency, but new challenges arise…”
    Získat plný text
    Konferenční příspěvek
  4. 4

    GPUpd: a fast and scalable multi-GPU architecture using cooperative projection and distribution Autor Kim, Youngsok, Jo, Jae-Eon, Jang, Hanhwi, Rhu, Minsoo, Kim, Hanjun, Kim, Jangwoo

    ISBN: 1450349528, 9781450349529
    ISSN: 2379-3155
    Vydáno: New York, NY, USA ACM 14.10.2017
    “…Graphics Processing Unit (GPU) vendors have been scaling single-GPU architectures to satisfy the ever-increasing user demands for faster graphics processing…”
    Získat plný text
    Konferenční příspěvek
  5. 5

    CAPES: unsupervised storage performance tuning using neural network-based deep reinforcement learning Autor Li, Yan, Chang, Kenneth, Bel, Oceane, Miller, Ethan L., Long, Darrell D. E.

    ISBN: 9781450351140, 145035114X
    ISSN: 2167-4337
    Vydáno: New York, NY, USA ACM 12.11.2017
    “…Parameter tuning is an important task of storage performance optimization. Current practice usually involves numerous tweak-benchmark cycles that are slow and…”
    Získat plný text
    Konferenční příspěvek