Výsledky vyhledávání - Augmenting Physics-based Models in ICME with Machine Learning and Uncertainty Quantification

  1. 1

    Physics-Informed Machine Learning Approach for Augmenting Turbulence Models: A Comprehensive Framework Autor Jin-Long, Wu, Xiao, Heng, Paterson, Eric

    ISSN: 2331-8422
    Vydáno: Ithaca Cornell University Library, arXiv.org 09.09.2018
    Vydáno v arXiv.org (09.09.2018)
    “… Recently, Wang et al. demonstrated that machine learning can be used to improve the RANS modeled Reynolds stresses by leveraging data from high fidelity simulations…”
    Získat plný text
    Paper
  2. 2

    Recent progress in augmenting turbulence models with physics-informed machine learning Autor Zhang, Xinlei, Wu, Jinlong, Coutier-Delgosha, Olivier, Xiao, Heng

    ISSN: 1001-6058, 1878-0342
    Vydáno: Singapore Springer Singapore 01.12.2019
    Vydáno v Journal of hydrodynamics. Series B (01.12.2019)
    “… This paper presents some of the recent progresses in our group on augmenting turbulence models with physics-informed machine learning…”
    Získat plný text
    Journal Article
  3. 3

    Training Machine Learning Surrogate Models From a High‐Fidelity PhysicsBased Model: Application for Real‐Time Street‐Scale Flood Prediction in an Urban Coastal Community Autor Zahura, Faria T., Goodall, Jonathan L., Sadler, Jeffrey M., Shen, Yawen, Morsy, Mohamed M., Behl, Madhur

    ISSN: 0043-1397, 1944-7973
    Vydáno: Washington John Wiley & Sons, Inc 01.10.2020
    Vydáno v Water resources research (01.10.2020)
    “…Mitigating the adverse impacts caused by increasing flood risks in urban coastal communities requires effective flood prediction for prompt action. Typically, physicsbased 1‐D pipe/2…”
    Získat plný text
    Journal Article
  4. 4

    A Physics‐Aware Machine Learning‐Based Framework for Minimizing Prediction Uncertainty of Hydrological Models Autor Roy, Abhinanda, Kasiviswanathan, K. S., Patidar, Sandhya, Adeloye, Adebayo J., Soundharajan, Bankaru‐Swamy, Ojha, Chandra Shekhar P.

    ISSN: 0043-1397, 1944-7973
    Vydáno: 01.06.2023
    Vydáno v Water resources research (01.06.2023)
    “… arising from model inputs, parameters, and structure. Despite several attempts to quantify the model prediction uncertainty, reducing the same for improving the reliability of models is indispensable for their wider acceptance…”
    Získat plný text
    Journal Article
  5. 5

    Dynamic energy system modeling using hybrid physics-based and machine learning encoder–decoder models Autor Machalek, Derek, Tuttle, Jake, Andersson, Klas, Powell, Kody M.

    ISSN: 2666-5468, 2666-5468
    Vydáno: United States Elsevier Ltd 01.08.2022
    Vydáno v Energy and AI (01.08.2022)
    “… The evaluated models are a pure machine learning model, a novel hybrid machine learning and physics-based model, and the hybrid model with an incomplete dataset…”
    Získat plný text
    Journal Article
  6. 6

    PhysicsBased Machine Learning Electroluminescence Models for Fast yet Accurate Solar Cell Characterization Autor Laot, Erell, Puel, Jean‐Baptiste, Guillemoles, Jean‐François, Ory, Daniel

    ISSN: 1062-7995, 1099-159X
    Vydáno: Wiley 02.03.2025
    Vydáno v Progress in photovoltaics (02.03.2025)
    “… A derived physical model enables the determination of two local pseudoparameters from ELV data measured on silicon solar cells…”
    Získat plný text
    Journal Article
  7. 7

    Projection-based model reduction: Formulations for physics-based machine learning Autor Swischuk, Renee, Mainini, Laura, Peherstorfer, Benjamin, Willcox, Karen

    ISSN: 0045-7930, 1879-0747
    Vydáno: Amsterdam Elsevier Ltd 30.01.2019
    Vydáno v Computers & fluids (30.01.2019)
    “…•New approach for physics-based machine learning using POD expansions.•Machine learning methods learn map between inputs and POD coefficients…”
    Získat plný text
    Journal Article
  8. 8

    AdjointNet: Constraining machine learning models with physics-based codes Autor Karra, Satish, Ahmmed, Bulbul, Mudunuru, Maruti K

    ISSN: 2331-8422
    Vydáno: Ithaca Cornell University Library, arXiv.org 08.09.2021
    Vydáno v arXiv.org (08.09.2021)
    “…Physics-informed Machine Learning has recently become attractive for learning physical parameters and features from simulation and observation data…”
    Získat plný text
    Paper
  9. 9

    Sequence-based Machine Learning Models in Jet Physics Autor Teixeira de Lima, Rafael

    ISSN: 2331-8422
    Vydáno: Ithaca Cornell University Library, arXiv.org 09.02.2021
    Vydáno v arXiv.org (09.02.2021)
    “… In particular, Machine Learning algorithms with sequences as inputs have seen successfull applications to important problems, such as Natural Language Processing (NLP…”
    Získat plný text
    Paper
  10. 10
  11. 11

    Interpretable machine learning models: a physics-based view Autor Matei, Ion, de Kleer, Johan, Somarakis, Christoforos, Rai, Rahul, Baras, John S

    ISSN: 2331-8422
    Vydáno: Ithaca Cornell University Library, arXiv.org 22.03.2020
    Vydáno v arXiv.org (22.03.2020)
    “…To understand changes in physical systems and facilitate decisions, explaining how model predictions are made is crucial…”
    Získat plný text
    Paper
  12. 12

    Variability Aware FET Model With Physics Knowledge Based Machine Learning Autor Sheelvardhan, Kumar, Guglani, Surila, Ehteshamuddin, M., Roy, Sourajeet, Dasgupta, Avirup

    Vydáno: IEEE 07.03.2023
    “…) using various machine learning (ML) architectures. This paper provides a detailed comparison of the various architectures…”
    Získat plný text
    Konferenční příspěvek
  13. 13

    Physics-Based Propagation Models Enabled by Machine Learning Autor Seretis, Aristeidis

    ISBN: 9798342743198
    Vydáno: ProQuest Dissertations & Theses 01.01.2024
    “… To that end, channel propagation models are indispensable. Such models can be used to optimize the position of wireless access points, assess interference from and towards…”
    Získat plný text
    Dissertation
  14. 14

    Microstructure Generation via Generative Adversarial Network for Heterogeneous, Topologically Complex 3D Materials Autor Hsu, Tim, Epting, William K., Kim, Hokon, Abernathy, Harry W., Hackett, Gregory A., Rollett, Anthony D., Salvador, Paul A., Holm, Elizabeth A.

    ISSN: 1047-4838, 1543-1851
    Vydáno: New York Springer US 01.01.2021
    Vydáno v JOM (1989) (01.01.2021)
    “…). Importantly, simulations of electrochemical performance, using a locally resolved finite element model, demonstrate that the GAN-generated microstructures closely match the performance distribution…”
    Získat plný text
    Journal Article
  15. 15

    MachineLearning (ML)‐Physics Fusion Model Accelerates the Paradigm Shift in Typhoon Forecasting With a CNOP‐Based Assimilation Framework Autor Niu, Zeyi, Wang, Dongliang, Mu, Mu, Huang, Wei, Fan, Xuliang, Yang, Mengqi, Qin, Bo

    ISSN: 0094-8276, 1944-8007
    Vydáno: Washington John Wiley & Sons, Inc 16.08.2025
    Vydáno v Geophysical research letters (16.08.2025)
    “…‐learning model with the physicsbased Shanghai Typhoon Model (SHTM). By employing spectral nudging, the hybrid FuXi…”
    Získat plný text
    Journal Article
  16. 16

    RETRACTED: A Physics‐Aware Machine Learning‐Based Framework for Minimizing Prediction Uncertainty of Hydrological Models Autor Roy, Abhinanda, Kasiviswanathan, K. S., Patidar, Sandhya, Adeloye, Adebayo J., Soundharajan, Bankaru‐Swamy, Ojha, Chandra Shekhar P.

    ISSN: 0043-1397, 1944-7973
    Vydáno: Washington John Wiley & Sons, Inc 01.06.2023
    Vydáno v Water resources research (01.06.2023)
    “… arising from model inputs, parameters, and structure. Despite several attempts to quantify the model prediction uncertainty, reducing the same for improving the reliability of models is indispensable for their wider acceptance…”
    Získat plný text
    Journal Article
  17. 17

    A Novel Physics‐Aware Machine Learning‐Based Dynamic Error Correction Model for Improving Streamflow Forecast Accuracy Autor Roy, Abhinanda, Kasiviswanathan, K. S., Patidar, Sandhya, Adeloye, Adebayo J., Soundharajan, Bankaru‐Swamy, Ojha, Chandra Shekhar P.

    ISSN: 0043-1397, 1944-7973
    Vydáno: Washington John Wiley & Sons, Inc 01.02.2023
    Vydáno v Water resources research (01.02.2023)
    “… This paper aims to investigate the potential of a novel hybrid modeling framework that couples the random forest algorithm, particle filter, and the HBV model for improving the overall accuracy…”
    Získat plný text
    Journal Article
  18. 18

    Comparing PhysicsBased, Conceptual and MachineLearning Models to Predict Groundwater Levels by BMA Autor Wöhling, Thomas, Delgadillo, Alvaro Oliver Crespo, Kraft, Moritz, Guthke, Anneli

    ISSN: 0017-467X, 1745-6584, 1745-6584
    Vydáno: Malden, US Blackwell Publishing Ltd 01.07.2025
    Vydáno v Ground water (01.07.2025)
    “…), an eigenmodel, a transfer‐function model, and three machine learning models, namely, multi‐layer perceptron models, long short…”
    Získat plný text
    Journal Article
  19. 19

    A Hybrid Atmospheric Model Incorporating Machine Learning Can Capture Dynamical Processes Not Captured by Its PhysicsBased Component Autor Arcomano, Troy, Szunyogh, Istvan, Wikner, Alexander, Hunt, Brian R., Ott, Edward

    ISSN: 0094-8276, 1944-8007
    Vydáno: Washington John Wiley & Sons, Inc 28.04.2023
    Vydáno v Geophysical research letters (28.04.2023)
    “…It is shown that a recently developed hybrid modeling approach that combines machine learning (ML…”
    Získat plný text
    Journal Article
  20. 20

    Prediction Beyond the Medium Range With an Atmosphere‐Ocean Model That Combines PhysicsBased Modeling and Machine Learning Autor Patel, Dhruvit, Arcomano, Troy, Hunt, Brian, Szunyogh, Istvan, Ott, Edward

    ISSN: 1942-2466, 1942-2466
    Vydáno: Washington John Wiley & Sons, Inc 01.04.2025
    “…This paper explores the potential of a hybrid modeling approach that combines machine learning (ML…”
    Získat plný text
    Journal Article