Výsledky vyhledávání - Augmenting Physics-based Models in ICME with Machine Learning and Uncertainty Quantification
-
1
Physics-Informed Machine Learning Approach for Augmenting Turbulence Models: A Comprehensive Framework
ISSN: 2331-8422Vydáno: Ithaca Cornell University Library, arXiv.org 09.09.2018Vydáno v arXiv.org (09.09.2018)“… Recently, Wang et al. demonstrated that machine learning can be used to improve the RANS modeled Reynolds stresses by leveraging data from high fidelity simulations…”
Získat plný text
Paper -
2
Recent progress in augmenting turbulence models with physics-informed machine learning
ISSN: 1001-6058, 1878-0342Vydáno: Singapore Springer Singapore 01.12.2019Vydáno v Journal of hydrodynamics. Series B (01.12.2019)“… This paper presents some of the recent progresses in our group on augmenting turbulence models with physics-informed machine learning…”
Získat plný text
Journal Article -
3
Training Machine Learning Surrogate Models From a High‐Fidelity Physics‐Based Model: Application for Real‐Time Street‐Scale Flood Prediction in an Urban Coastal Community
ISSN: 0043-1397, 1944-7973Vydáno: Washington John Wiley & Sons, Inc 01.10.2020Vydáno v Water resources research (01.10.2020)“…Mitigating the adverse impacts caused by increasing flood risks in urban coastal communities requires effective flood prediction for prompt action. Typically, physics‐based 1‐D pipe/2…”
Získat plný text
Journal Article -
4
A Physics‐Aware Machine Learning‐Based Framework for Minimizing Prediction Uncertainty of Hydrological Models
ISSN: 0043-1397, 1944-7973Vydáno: 01.06.2023Vydáno v Water resources research (01.06.2023)“… arising from model inputs, parameters, and structure. Despite several attempts to quantify the model prediction uncertainty, reducing the same for improving the reliability of models is indispensable for their wider acceptance…”
Získat plný text
Journal Article -
5
Dynamic energy system modeling using hybrid physics-based and machine learning encoder–decoder models
ISSN: 2666-5468, 2666-5468Vydáno: United States Elsevier Ltd 01.08.2022Vydáno v Energy and AI (01.08.2022)“… The evaluated models are a pure machine learning model, a novel hybrid machine learning and physics-based model, and the hybrid model with an incomplete dataset…”
Získat plný text
Journal Article -
6
Physics‐Based Machine Learning Electroluminescence Models for Fast yet Accurate Solar Cell Characterization
ISSN: 1062-7995, 1099-159XVydáno: Wiley 02.03.2025Vydáno v Progress in photovoltaics (02.03.2025)“… A derived physical model enables the determination of two local pseudoparameters from ELV data measured on silicon solar cells…”
Získat plný text
Journal Article -
7
Projection-based model reduction: Formulations for physics-based machine learning
ISSN: 0045-7930, 1879-0747Vydáno: Amsterdam Elsevier Ltd 30.01.2019Vydáno v Computers & fluids (30.01.2019)“…•New approach for physics-based machine learning using POD expansions.•Machine learning methods learn map between inputs and POD coefficients…”
Získat plný text
Journal Article -
8
AdjointNet: Constraining machine learning models with physics-based codes
ISSN: 2331-8422Vydáno: Ithaca Cornell University Library, arXiv.org 08.09.2021Vydáno v arXiv.org (08.09.2021)“…Physics-informed Machine Learning has recently become attractive for learning physical parameters and features from simulation and observation data…”
Získat plný text
Paper -
9
Sequence-based Machine Learning Models in Jet Physics
ISSN: 2331-8422Vydáno: Ithaca Cornell University Library, arXiv.org 09.02.2021Vydáno v arXiv.org (09.02.2021)“… In particular, Machine Learning algorithms with sequences as inputs have seen successfull applications to important problems, such as Natural Language Processing (NLP…”
Získat plný text
Paper -
10
Hybrid Physics-Based and Machine Learning Models for Reservoir Simulations
Vydáno: Washington, D.C Targeted News Service 09.05.2023Vydáno v Targeted News Service (09.05.2023)Získat plný text
Newsletter -
11
Interpretable machine learning models: a physics-based view
ISSN: 2331-8422Vydáno: Ithaca Cornell University Library, arXiv.org 22.03.2020Vydáno v arXiv.org (22.03.2020)“…To understand changes in physical systems and facilitate decisions, explaining how model predictions are made is crucial…”
Získat plný text
Paper -
12
Variability Aware FET Model With Physics Knowledge Based Machine Learning
Vydáno: IEEE 07.03.2023Vydáno v 2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM) (07.03.2023)“…) using various machine learning (ML) architectures. This paper provides a detailed comparison of the various architectures…”
Získat plný text
Konferenční příspěvek -
13
Physics-Based Propagation Models Enabled by Machine Learning
ISBN: 9798342743198Vydáno: ProQuest Dissertations & Theses 01.01.2024“… To that end, channel propagation models are indispensable. Such models can be used to optimize the position of wireless access points, assess interference from and towards…”
Získat plný text
Dissertation -
14
Microstructure Generation via Generative Adversarial Network for Heterogeneous, Topologically Complex 3D Materials
ISSN: 1047-4838, 1543-1851Vydáno: New York Springer US 01.01.2021Vydáno v JOM (1989) (01.01.2021)“…). Importantly, simulations of electrochemical performance, using a locally resolved finite element model, demonstrate that the GAN-generated microstructures closely match the performance distribution…”
Získat plný text
Journal Article -
15
Machine‐Learning (ML)‐Physics Fusion Model Accelerates the Paradigm Shift in Typhoon Forecasting With a CNOP‐Based Assimilation Framework
ISSN: 0094-8276, 1944-8007Vydáno: Washington John Wiley & Sons, Inc 16.08.2025Vydáno v Geophysical research letters (16.08.2025)“…‐learning model with the physics‐based Shanghai Typhoon Model (SHTM). By employing spectral nudging, the hybrid FuXi…”
Získat plný text
Journal Article -
16
RETRACTED: A Physics‐Aware Machine Learning‐Based Framework for Minimizing Prediction Uncertainty of Hydrological Models
ISSN: 0043-1397, 1944-7973Vydáno: Washington John Wiley & Sons, Inc 01.06.2023Vydáno v Water resources research (01.06.2023)“… arising from model inputs, parameters, and structure. Despite several attempts to quantify the model prediction uncertainty, reducing the same for improving the reliability of models is indispensable for their wider acceptance…”
Získat plný text
Journal Article -
17
A Novel Physics‐Aware Machine Learning‐Based Dynamic Error Correction Model for Improving Streamflow Forecast Accuracy
ISSN: 0043-1397, 1944-7973Vydáno: Washington John Wiley & Sons, Inc 01.02.2023Vydáno v Water resources research (01.02.2023)“… This paper aims to investigate the potential of a novel hybrid modeling framework that couples the random forest algorithm, particle filter, and the HBV model for improving the overall accuracy…”
Získat plný text
Journal Article -
18
Comparing Physics‐Based, Conceptual and Machine‐Learning Models to Predict Groundwater Levels by BMA
ISSN: 0017-467X, 1745-6584, 1745-6584Vydáno: Malden, US Blackwell Publishing Ltd 01.07.2025Vydáno v Ground water (01.07.2025)“…), an eigenmodel, a transfer‐function model, and three machine learning models, namely, multi‐layer perceptron models, long short…”
Získat plný text
Journal Article -
19
A Hybrid Atmospheric Model Incorporating Machine Learning Can Capture Dynamical Processes Not Captured by Its Physics‐Based Component
ISSN: 0094-8276, 1944-8007Vydáno: Washington John Wiley & Sons, Inc 28.04.2023Vydáno v Geophysical research letters (28.04.2023)“…It is shown that a recently developed hybrid modeling approach that combines machine learning (ML…”
Získat plný text
Journal Article -
20
Prediction Beyond the Medium Range With an Atmosphere‐Ocean Model That Combines Physics‐Based Modeling and Machine Learning
ISSN: 1942-2466, 1942-2466Vydáno: Washington John Wiley & Sons, Inc 01.04.2025Vydáno v Journal of advances in modeling earth systems (01.04.2025)“…This paper explores the potential of a hybrid modeling approach that combines machine learning (ML…”
Získat plný text
Journal Article

