Výsledky vyhledávání - Approximate sample error minimization algorithm

  1. 1

    Learning from non-irreducible Markov chains Autor Sandrić, Nikola, Šebek, Stjepan

    ISSN: 0022-247X, 1096-0813
    Vydáno: Elsevier Inc 15.07.2023
    “…Most of the existing literature on supervised machine learning problems focuses on the case when the training data set is drawn from an i.i.d. sample…”
    Získat plný text
    Journal Article
  2. 2

    Optimal Subsampling for Large Sample Logistic Regression Autor Wang, HaiYing, Zhu, Rong, Ma, Ping

    ISSN: 0162-1459, 1537-274X, 1537-274X
    Vydáno: United States Taylor & Francis 03.04.2018
    “… In this article, we propose fast subsampling algorithms to efficiently approximate the maximum likelihood estimate in logistic regression…”
    Získat plný text
    Journal Article
  3. 3

    Phase Transition of Total Variation Based on Approximate Message Passing Algorithm Autor Cheng, Xiang, Lei, Hong

    ISSN: 2079-9292, 2079-9292
    Vydáno: Basel MDPI AG 01.08.2022
    Vydáno v Electronics (Basel) (01.08.2022)
    “…In compressed sensing (CS), one seeks to down-sample some high-dimensional signals and recover them accurately by exploiting the sparsity of the signals…”
    Získat plný text
    Journal Article
  4. 4

    Rademacher learning rates for iterated random functions Autor Sandrić, Nikola

    ISSN: 0885-064X
    Vydáno: Elsevier Inc 01.12.2025
    Vydáno v Journal of Complexity (01.12.2025)
    “…Most supervised learning methods assume training data is drawn from an i.i.d. sample. However, real-world problems often exhibit temporal dependence and strong correlations between marginals of the data-generating process, rendering…”
    Získat plný text
    Journal Article
  5. 5

    A Canonical Form for Weighted Automata and Applications to Approximate Minimization Autor Balle, Borja, Panangaden, Prakash, Precup, Doina

    ISSN: 1043-6871
    Vydáno: IEEE 01.07.2015
    “…We study the problem of constructing approximations to a weighted automaton. Weighted finite automata (WFA) are closely related to the theory of rational…”
    Získat plný text
    Konferenční příspěvek
  6. 6

    Learning from non-irreducible Markov chains Autor Sandrić, Nikola, Šebek, Stjepan

    ISSN: 2331-8422
    Vydáno: Ithaca Cornell University Library, arXiv.org 20.01.2023
    Vydáno v arXiv.org (20.01.2023)
    “…Mostof the existing literature on supervised machine learning problems focuses on the case when the training data set is drawn from an i.i.d. sample…”
    Získat plný text
    Paper
  7. 7

    A Randomized Algorithm for Nonconvex Minimization With Inexact Evaluations and Complexity Guarantees Autor Li, Shuyao, Wright, Stephen J.

    ISSN: 0022-3239, 1573-2878
    Vydáno: New York Springer US 01.12.2025
    “…We consider minimization of a smooth nonconvex function with inexact oracle access to gradient and Hessian…”
    Získat plný text
    Journal Article
  8. 8

    Efficient Data Placement and Replication for QoS-Aware Approximate Query Evaluation of Big Data Analytics Autor Xia, Qiufen, Xu, Zichuan, Liang, Weifa, Yu, Shui, Guo, Song, Zomaya, Albert Y.

    ISSN: 1045-9219, 1558-2183
    Vydáno: New York IEEE 01.12.2019
    “… Instead, sometimes users may only be interested in timely approximate rather than exact query results…”
    Získat plný text
    Journal Article
  9. 9

    Minimization for conditional simulation: Relationship to optimal transport Autor Oliver, Dean S.

    ISSN: 0021-9991, 1090-2716
    Vydáno: Elsevier Inc 15.05.2014
    Vydáno v Journal of computational physics (15.05.2014)
    “…In this paper, we consider the problem of generating independent samples from a conditional distribution when independent samples from the prior distribution are available…”
    Získat plný text
    Journal Article
  10. 10

    Approximation of frame based missing data recovery Autor Cai, Jian-Feng, Shen, Zuowei, Ye, Gui-Bo

    ISSN: 1063-5203, 1096-603X
    Vydáno: Elsevier Inc 01.09.2011
    “… While many such algorithms have been developed recently, there are very few papers available on their error estimations…”
    Získat plný text
    Journal Article
  11. 11

    A deep neural network-based method for solving obstacle problems Autor Cheng, Xiaoliang, Shen, Xing, Wang, Xilu, Liang, Kewei

    ISSN: 1468-1218, 1878-5719
    Vydáno: Elsevier Ltd 01.08.2023
    “… The approximate error is bounded by the depth and width of the network, the statistical error is estimated by the number of samples, and the optimization error is reflected in the empirical loss term…”
    Získat plný text
    Journal Article
  12. 12

    On optimal selection of summary statistics for approximate Bayesian computation Autor Nunes, Matthew A, Balding, David J

    ISSN: 1544-6115, 1544-6115
    Vydáno: Germany 01.01.2010
    “… We approach it from the point of view of seeking data summaries that minimize the average squared error of the posterior distribution for a parameter of interest under approximate Bayesian computation (ABC…”
    Zjistit podrobnosti o přístupu
    Journal Article
  13. 13

    Analysis of the Generalization Error: Empirical Risk Minimization over Deep Artificial Neural Networks Overcomes the Curse of Dimensionality in the Numerical Approximation of Black-Scholes Partial Differential Equations Autor Berner, Julius, Grohs, Philipp, Jentzen, Arnulf

    ISSN: 2331-8422
    Vydáno: Ithaca Cornell University Library, arXiv.org 11.11.2020
    Vydáno v arXiv.org (11.11.2020)
    “…The development of new classification and regression algorithms based on empirical risk minimization (ERM…”
    Získat plný text
    Paper
  14. 14

    Near-optimality of greedy set selection in the sampling of graph signals Autor Chamon, Luiz F. O., Ribeiro, Alejandro

    Vydáno: IEEE 01.12.2016
    “… Still, sampling set selection remains an open issue. Indeed, although conditions for graph signal reconstruction from noiseless samples were derived, the presence of noise makes sampling set selection combinatorial and NP-hard in general…”
    Získat plný text
    Konferenční příspěvek
  15. 15

    Machine learning based energy-free structure predictions of molecules, transition states, and solids Autor Lemm, Dominik, von Rudorff, Guido Falk, von Lilienfeld, O. Anatole

    ISSN: 2041-1723, 2041-1723
    Vydáno: London Nature Publishing Group UK 22.07.2021
    Vydáno v Nature communications (22.07.2021)
    “… Conventionally, force-fields or ab initio methods determine structure through energy minimization, which is either approximate or computationally demanding…”
    Získat plný text
    Journal Article
  16. 16

    Statistical learning problem of artificial neural network to control roofing process Autor Lapidus, Azariy, Makarov, Aleksandr

    ISSN: 2261-236X, 2274-7214, 2261-236X
    Vydáno: Les Ulis EDP Sciences 01.01.2017
    Vydáno v MATEC web of conferences (01.01.2017)
    “… ANN learning is the main stage of its development. A key question for supervised learning is how many number of training examples we need to approximate the true relationship between network inputs and output with the desired accuracy…”
    Získat plný text
    Journal Article Konferenční příspěvek
  17. 17

    Algorithm for sparse representation minimizing mean square error of power spectrograms Autor Tanaka, Yuma, Ogawa, Takahiro, Haseyama, Miki

    ISSN: 1546-1874, 2165-3577
    Vydáno: IEEE 01.07.2015
    “…Sparse representation is an idea to approximate a target signal by a linear combination of a small number of sample signals, and it is utilized in various research fields…”
    Získat plný text
    Konferenční příspěvek Journal Article
  18. 18

    Efficient and accurate approximate Bayesian inference with an application to insurance data Autor Streftaris, George, Worton, Bruce J.

    ISSN: 0167-9473, 1872-7352
    Vydáno: Amsterdam Elsevier B.V 20.01.2008
    “… An approximate Gibbs sampling method and an exact independence-type Metropolis–Hastings algorithm are derived, based on a log-normal/gamma mixture density that closely approximates the conditional distribution of the Poisson parameters…”
    Získat plný text
    Journal Article
  19. 19

    Group Distributionally Robust Dataset Distillation with Risk Minimization Autor Vahidian, Saeed, Wang, Mingyu, Gu, Jianyang, Kungurtsev, Vyacheslav, Jiang, Wei, Chen, Yiran

    ISSN: 2331-8422
    Vydáno: Ithaca Cornell University Library, arXiv.org 11.03.2024
    Vydáno v arXiv.org (11.03.2024)
    “… However, targeting the training dataset must be thought of as auxiliary in the same sense that the training set is an approximate substitute for the population distribution, and the latter is the data…”
    Získat plný text
    Paper
  20. 20

    An optimal control framework for adaptive neural ODEs Autor Aghili, Joubine, Mula, Olga

    ISSN: 1019-7168, 1572-9044
    Vydáno: New York Springer US 01.06.2024
    Vydáno v Advances in computational mathematics (01.06.2024)
    “… The learning task consists in finding the ODE parameters as the optimal values of a sampled loss minimization problem…”
    Získat plný text
    Journal Article