Výsledky vyhľadávania - Anomaly Detection▼mUltivariate Time Series▼vAriational Autoencoder*

  1. 1

    Robust Unsupervised Anomaly Detection With Variational Autoencoder in Multivariate Time Series Data Autor Umaporn Yokkampon, Abbe Mowshowitz, Sakmongkon Chumkamon, Eiji Hayashi

    ISSN: 2169-3536
    Vydavateľské údaje: Institute of Electrical and Electronics Engineers (IEEE) 01.01.2022
    Vydané v IEEE Access (01.01.2022)
    Získať plný text
    Journal Article
  2. 2

    Anomaly detection model for multivariate time series based on stochastic Transformer Autor Weigang HUO, Rui LIANG, Yonghua LI

    ISSN: 1000-436X
    Vydavateľské údaje: Editorial Department of Journal on Communications 01.02.2023
    Vydané v Tongxin Xuebao (01.02.2023)
    “…Aiming at the problem that the existing multivariate time series anomaly detection models based on variational autoencoders could not propagate long-term temporal dependencies between stochastic…”
    Získať plný text
    Journal Article
  3. 3

    Multivariate time series anomaly detection with variational autoencoder and spatial–temporal graph network Autor Guan, Siwei, He, Zhiwei, Ma, Shenhui, Gao, Mingyu

    ISSN: 0167-4048, 1872-6208
    Vydavateľské údaje: Elsevier Ltd 01.07.2024
    Vydané v Computers & security (01.07.2024)
    “…Effective anomaly detection in multivariate time series (MTS) is very essential for modern complex physical equipment…”
    Získať plný text
    Journal Article
  4. 4

    Anomaly detection model for multivariate time series based on stochastic Transformer Autor Weigang HUO, Rui LIANG, Yonghua LI

    ISSN: 1000-436X
    Vydavateľské údaje: Editorial Department of Journal on Communications 01.02.2023
    Vydané v Tongxin Xuebao (01.02.2023)
    “…Aiming at the problem that the existing multivariate time series anomaly detection models based on variational autoencoders could not propagate long-term temporal dependencies between stochastic…”
    Získať plný text
    Journal Article
  5. 5
  6. 6

    Inter-layer explainable variational autoencoder model for multivariate time series anomaly detection Autor Zhang, Xiaoxia, Wang, Guangyao, Chen, Yi, Yang, Wenzhi, Wang, Guoyin

    ISSN: 0952-1976
    Vydavateľské údaje: Elsevier Ltd 08.11.2025
    “… Multivariate time series data, one of the most frequently used data types in various industries, often contains anomalies caused by human error or electromagnetic interference…”
    Získať plný text
    Journal Article
  7. 7

    Robust Unsupervised Anomaly Detection With Variational Autoencoder in Multivariate Time Series Data Autor Yokkampon, Umaporn, Mowshowitz, Abbe, Chumkamon, Sakmongkon, Hayashi, Eiji

    ISSN: 2169-3536, 2169-3536
    Vydavateľské údaje: Piscataway IEEE 2022
    Vydané v IEEE access (2022)
    “… To meet this challenge, we propose a Multi Scale Convolutional Variational Autoencoder (MSCVAE) to detect anomalies in multivariate time series data…”
    Získať plný text
    Journal Article
  8. 8

    MST-VAE: Multi-Scale Temporal Variational Autoencoder for Anomaly Detection in Multivariate Time Series Autor Pham, Tuan-Anh, Lee, Jong-Hoon, Park, Choong-Shik

    ISSN: 2076-3417, 2076-3417
    Vydavateľské údaje: MDPI AG 07.10.2022
    Vydané v Applied sciences (07.10.2022)
    “…In IT monitoring systems, anomaly detection plays a vital role in detecting and alerting unexpected behaviors timely to system operators…”
    Získať plný text
    Journal Article
  9. 9

    Semisupervised anomaly detection of multivariate time series based on a variational autoencoder Autor Chen, Ningjiang, Tu, Huan, Duan, Xiaoyan, Hu, Liangqing, Guo, Chengxiang

    ISSN: 0924-669X, 1573-7497
    Vydavateľské údaje: New York Springer US 01.03.2023
    “… As a common method implemented in artificial intelligence for IT operations (AIOps), time series anomaly detection has been widely studied and applied…”
    Získať plný text
    Journal Article
  10. 10

    基于随机Transformer的多维时间序列异常检测模型 Autor 霍纬纲, 梁锐, 李永华

    ISSN: 1000-436X
    Vydavateľské údaje: 中国民航大学计算机科学与技术学院,天津 300300 25.02.2023
    Vydané v 通信学报 (25.02.2023)
    “…TP391; 针对已有基于变分自编码器(VAE)的多维时间序列(MTS)异常检测模型无法在隐空间中传播随机变量间的长时依赖性问题,提出了一种融合Transformer编码器和VAE的随…”
    Získať plný text
    Journal Article
  11. 11

    Anomaly detection for multivariate times series through the multi-scale convolutional recurrent variational autoencoder Autor Xie, Tianming, Xu, Qifa, Jiang, Cuixia

    ISSN: 0957-4174, 1873-6793
    Vydavateľské údaje: Elsevier Ltd 30.11.2023
    Vydané v Expert systems with applications (30.11.2023)
    “…To realize the anomaly detection for industrial multi-sensor data, we develop a novel multi-scale convolutional recurrent variational autoencoder (MSCRVAE) model…”
    Získať plný text
    Journal Article
  12. 12

    An Anomaly Detection Method for Multivariate Time Series Data Based on Variational Autoencoders and Association Discrepancy Autor Wang, Haodong, Zhang, Huaxiong

    ISSN: 2227-7390, 2227-7390
    Vydavateľské údaje: Basel MDPI AG 01.04.2025
    Vydané v Mathematics (Basel) (01.04.2025)
    “… The precise identification of anomalies in time series data—especially within intricate and ever-changing environments…”
    Získať plný text
    Journal Article
  13. 13

    Unsupervised Anomaly Detection in Multivariate Time Series through Transformer-based Variational Autoencoder Autor Zhang, Hongwei, Xia, Yuanqing, Yan, Tijin, Liu, Guiyang

    ISSN: 1948-9447
    Vydavateľské údaje: IEEE 22.05.2021
    “… Due to the complex temporal dependency of intra-channel and inter-correlations among different channels, few of proposed algorithms have addressed these challenges for anomaly detection in multivariate time series…”
    Získať plný text
    Konferenčný príspevok..
  14. 14

    MA-VAE: Multi-head Attention-based Variational Autoencoder Approach for Anomaly Detection in Multivariate Time-series Applied to Automotive Endurance Powertrain Testing Autor Correia, Lucas, Jan-Christoph Goos, Klein, Philipp, Bäck, Thomas, Kononova, Anna V

    ISSN: 2331-8422
    Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 19.09.2024
    Vydané v arXiv.org (19.09.2024)
    “… We propose a variational autoencoder with multi-head attention (MA-VAE), which, when trained on unlabelled data, not only provides very few false positives but also manages to detect the majority of the anomalies presented…”
    Získať plný text
    Paper
  15. 15

    TeVAE: A Variational Autoencoder Approach for Discrete Online Anomaly Detection in Variable-state Multivariate Time-series Data Autor Correia, Lucas, Jan-Christoph Goos, Klein, Philipp, Bäck, Thomas, Kononova, Anna V

    ISSN: 2331-8422
    Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 09.07.2024
    Vydané v arXiv.org (09.07.2024)
    “… To address this, we propose a temporal variational autoencoder (TeVAE) that can detect anomalies with minimal false positives when trained on unlabelled data…”
    Získať plný text
    Paper
  16. 16

    Unsupervised Anomaly Detection of Industrial Robots using Sliding-Window Convolutional Variational Autoencoder Autor Chen, Tingting, Liu, Xueping, Xia, Bizhong, Wang, Wei, Lai, Yongzhi

    ISSN: 2169-3536, 2169-3536
    Vydavateľské údaje: Piscataway IEEE 01.01.2020
    Vydané v IEEE access (01.01.2020)
    “… It is widely desired to have a real-time technique to constantly monitor robots by collecting time series data from robots, which can automatically detect incipient failures before robots totally shut down…”
    Získať plný text
    Journal Article
  17. 17

    StackVAE-G: An efficient and interpretable model for time series anomaly detection Autor Li, Wenkai, Hu, Wenbo, Chen, Ting, Chen, Ning, Feng, Cheng

    ISSN: 2666-6510, 2666-6510
    Vydavateľské údaje: Elsevier B.V 2022
    Vydané v AI open (2022)
    “… In this work, we propose a novel autoencoder-based model, named StackVAE-G that can significantly bring the efficiency and interpretability to multivariate time series anomaly detection…”
    Získať plný text
    Journal Article
  18. 18

    Online Data Drift Detection for Anomaly Detection Services based on Deep Learning towards Multivariate Time Series Autor Tan, Gou, Chen, Pengfei, Li, Min

    ISSN: 2693-9177
    Vydavateľské údaje: IEEE 22.10.2023
    “…), to monitor deep learning models in the field of multivariate time series anomaly…”
    Získať plný text
    Konferenčný príspevok..
  19. 19

    Echo-state conditional variational autoencoder for anomaly detection Autor Suwon Suh, Chae, Daniel H., Hyon-Goo Kang, Seungjin Choi

    ISSN: 2161-4407
    Vydavateľské údaje: IEEE 01.07.2016
    “… For instance, PCA has been successfully used for anomaly detection. Variational autoencoder (VAE) is a recently-developed deep generative model which has established itself as a powerful method for learning representation from data in a nonlinear way…”
    Získať plný text
    Konferenčný príspevok..
  20. 20

    Resource‐Efficient Anomaly Detection in Industrial Control Systems With Quantized Recurrent Variational Autoencoder Autor Fährmann, Daniel, Ihlefeld, Malte, Kuijper, Arjan, Damer, Naser

    ISSN: 2516-8398, 2516-8398
    Vydavateľské údaje: Wuhan John Wiley & Sons, Inc 01.01.2025
    “…This work presents a novel solution for multivariate time series anomaly detection in industrial control systems (ICSs…”
    Získať plný text
    Journal Article