Suchergebnisse - Advanced deep- Q network algorithm

  1. 1

    Automated DoS Penetration Testing Using Deep Q Learning Network-Quantile Regression Deep Q Learning Network Algorithms von Alhamed, Mariam, Rahman, M M Hafizur

    ISSN: 2158-107X, 2156-5570
    Veröffentlicht: West Yorkshire Science and Information (SAI) Organization Limited 2025
    “… As a result of this algorithm, an attack tree is generated, paths within the attack graph are searched for, and a deep-first search method is used to create a transfer matrix …”
    Volltext
    Journal Article
  2. 2

    Impact of energy storage devices on microgrid frequency performance: A robust DQN based grade-2 fuzzy cascaded controller von Sahu, Prakash Chandra, Jena, Smitasree, Mohapatra, Srikanta, Debdas, Subhra

    ISSN: 2772-6711, 2772-6711
    Veröffentlicht: Elsevier Ltd 01.12.2023
    Veröffentlicht in e-Prime (01.12.2023)
    “… •A microgrid is modeled by integrating various distributed power sources (DG) such as solar power stations (SPS), micro turbine (MT), wind power stations (WPS) …”
    Volltext
    Journal Article
  3. 3

    Traffic prediction and load balancing routing algorithm based on deep Q-network for SD-IoT von Ding, Qiao, Li, Nanyu, Ding, Heng, Wang, Jian, Li, Tao, Chen, Yongqing, Xian, Yantuan, Chen, Junyang

    ISSN: 1474-0346
    Veröffentlicht: Elsevier Ltd 01.11.2025
    Veröffentlicht in Advanced engineering informatics (01.11.2025)
    “… ) networks are encountering increasingly severe challenges in routing and load balancing. To address this, this paper proposes an intelligent load-balancing routing algorithm based on deep Q-network (LBR-DQN …”
    Volltext
    Journal Article
  4. 4

    An advanced deep reinforcement learning algorithm for three-layer D2D-edge-cloud computing architecture for efficient task offloading in the Internet of Things von Moghaddasi, Komeil, Rajabi, Shakiba, Gharehchopogh, Farhad Soleimanian, Ghaffari, Ali

    ISSN: 2210-5379
    Veröffentlicht: Elsevier Inc 01.09.2024
    Veröffentlicht in Sustainable computing informatics and systems (01.09.2024)
    “… ), an advanced Deep Reinforcement Learning (DRL) algorithm. This algorithm utilizes advanced neural networks to optimize task offloading in the three-tier framework …”
    Volltext
    Journal Article
  5. 5

    Design of Big Data Task Scheduling Optimization Algorithm Based on Improved Deep Q-Network von Chen, Fu, Wu, Chunyi

    ISSN: 2158-107X, 2156-5570
    Veröffentlicht: West Yorkshire Science and Information (SAI) Organization Limited 2024
    “… To overcome this, a scheduling model based on Markov decision process is proposed. The deep Q-network algorithm is used for directed acyclic graph task scheduling …”
    Volltext
    Journal Article
  6. 6

    Research on the Local Path Planning for Mobile Robots based on PRO-Dueling Deep Q-Network (DQN) Algorithm von Zhang, Yaoyu, Li, Caihong, Zhang, Guosheng, Zhou, Ruihong, Liang, Zhenying

    ISSN: 2158-107X, 2156-5570
    Veröffentlicht: West Yorkshire Science and Information (SAI) Organization Limited 2023
    “… This paper proposes a Pro-Dueling DQN algorithm to solve the problems of slow convergence speed and waste of effective experience of the traditional DQN (Deep Q-Network …”
    Volltext
    Journal Article
  7. 7

    An empirical study of the naïve REINFORCE algorithm for predictive maintenance von Siraskar, Rajesh, Kumar, Satish, Patil, Shruti, Bongale, Arunkumar, Kotecha, Ketan, Kulkarni, Ambarish

    ISSN: 3004-9261, 2523-3963, 3004-9261, 2523-3971
    Veröffentlicht: Cham Springer International Publishing 08.03.2025
    Veröffentlicht in Discover applied sciences (08.03.2025)
    “… However, these algorithms are extremely sensitive to hyperparameter tuning and network architecture, and this is where automated RL frameworks (AutoRL …”
    Volltext
    Journal Article
  8. 8

    FAQ: A Fuzzy-Logic-Assisted Q Learning Model for Resource Allocation in 6G V2X von Zhang, Minglong, Dou, Yi, Marojevic, Vuk, Chong, Peter Han Joo, Chan, Henry C. B.

    ISSN: 2327-4662, 2327-4662
    Veröffentlicht: Piscataway IEEE 15.01.2024
    Veröffentlicht in IEEE internet of things journal (15.01.2024)
    “… ) communications in the six generation (6G) cellular networks. Cellular V2X (C-V2X) communications empower advanced applications but at the same time bring unprecedented …”
    Volltext
    Journal Article
  9. 9

    Simulating multi‐exit evacuation using deep reinforcement learning von Xu, Dong, Huang, Xiao, Mango, Joseph, Li, Xiang, Li, Zhenlong

    ISSN: 1361-1682, 1467-9671
    Veröffentlicht: Oxford Blackwell Publishing Ltd 01.06.2021
    Veröffentlicht in Transactions in GIS (01.06.2021)
    “… MultiExit‐DRL, which involves a deep neural network (DNN) framework to facilitate state‐to‐action mapping. The DNN framework applies Rainbow Deep Q …”
    Volltext
    Journal Article
  10. 10

    Two-Stage WECC Composite Load Modeling: A Double Deep Q-Learning Networks Approach von Wang, Xinan, Wang, Yishen, Shi, Di, Wang, Jianhui, Wang, Zhiwei

    ISSN: 1949-3053, 1949-3061
    Veröffentlicht: Piscataway IEEE 01.09.2020
    Veröffentlicht in IEEE transactions on smart grid (01.09.2020)
    “… Enabled by the wide deployment of PMUs and advanced deep learning algorithms, proposed here is a double deep Q-learning network (DDQN …”
    Volltext
    Journal Article
  11. 11

    Waste Objects Segregation Using Deep Reinforcement Learning with Deep Q Networks von Khan, Nida, Kulkarni, Kunal, Mahale, Yashashree, Kolhar, Shrikrishna, Mahajan, Smita

    ISSN: 1633-1311, 2116-7125
    Veröffentlicht: Edmonton International Information and Engineering Technology Association (IIETA) 01.12.2024
    Veröffentlicht in Ingénierie des systèmes d'Information (01.12.2024)
    “… The Deep Q Network model proposed achieved an accuracy of approximately 73%. By employing DQN, an advanced reinforcement learning algorithm, the system ensures improved …”
    Volltext
    Journal Article
  12. 12

    Fast or Slow: An Autonomous Speed Control Approach for UAV-assisted IoT Data Collection Networks von Chu, Nam H., Hoang, Dinh Thai, Nguyen, Diep N., Huynh, Nguyen Van, Dutkiewicz, Eryk

    ISSN: 1558-2612
    Veröffentlicht: IEEE 01.01.2021
    “… In this way, the Q-learning algorithm can be adopted to obtain the optimal speed control policy for the UAV …”
    Volltext
    Tagungsbericht
  13. 13

    Deep reinforcement learning for photovoltaic performance ratio estimation and accurate degradation stage diagnosis based on precise RS-RP evaluation von Salehpour, Sherko, Eskandari, Aref, Nedaei, Amir, Aghaei, Mohammadreza

    ISSN: 2590-1230, 2590-1230
    Veröffentlicht: Elsevier B.V 01.12.2025
    Veröffentlicht in Results in engineering (01.12.2025)
    “… ) algorithms, namely Deep Q-Network (DQN), and soft actor-critic (SAC), to (i) detect and distinguish degradation conditions using a binary classification model and (ii …”
    Volltext
    Journal Article
  14. 14

    An exploratory study on intelligent active cell balancing of electric vehicle battery management and performance using machine learning algorithms von Rao, Veeranki Srinivasa, Sajja, Guna Sekhar, Manur, Vishwaraj B, Arandhakar, Sairaj, Krishna, V.B. Murali

    ISSN: 2590-1230, 2590-1230
    Veröffentlicht: Elsevier B.V 01.03.2025
    Veröffentlicht in Results in engineering (01.03.2025)
    “… •PA-RNN, Deep-Q, AQN, ADNN & AC enhance SoC accuracy and control.•Automotive Controllers are EV-specific for improved performance …”
    Volltext
    Journal Article
  15. 15

    Optimization of cache-enabled opportunistic interference alignment wireless networks: A big data deep reinforcement learning approach von Ying He, Chengchao Liang, Yu, F. Richard, Nan Zhao, Hongxi Yin

    ISSN: 1938-1883
    Veröffentlicht: IEEE 01.05.2017
    “… Deep reinforcement learning is an advanced reinforcement learning algorithm that uses deep Q network to approximate the Q value-action function …”
    Volltext
    Tagungsbericht
  16. 16

    Discrete Space Deep Reinforcement Learning Algorithm Based on Support Vector Machine Recursive Feature Elimination von Kim, Chayoung

    ISSN: 2073-8994, 2073-8994
    Veröffentlicht: Basel MDPI AG 01.08.2024
    Veröffentlicht in Symmetry (Basel) (01.08.2024)
    “… ) developed from the double deep Q-network (DDQN) in deep reinforcement learning (DRL) has become a standard …”
    Volltext
    Journal Article
  17. 17

    Multi-Channel Opportunistic Access for Heterogeneous Networks Based on Deep Reinforcement Learning von Ye, Xiaowen, Yu, Yiding, Fu, Liqun

    ISSN: 1536-1276, 1558-2248
    Veröffentlicht: New York IEEE 01.02.2022
    Veröffentlicht in IEEE transactions on wireless communications (01.02.2022)
    “… This paper investigates a new medium access control (MAC) protocol for multi-channel heterogeneous networks (HetNets …”
    Volltext
    Journal Article
  18. 18

    Deep-Reinforcement-Learning-Based Optimization for Cache-Enabled Opportunistic Interference Alignment Wireless Networks von Ying He, Zheng Zhang, Yu, F. Richard, Nan Zhao, Hongxi Yin, Leung, Victor C. M.

    ISSN: 0018-9545, 1939-9359
    Veröffentlicht: New York IEEE 01.11.2017
    Veröffentlicht in IEEE transactions on vehicular technology (01.11.2017)
    “… , which is an advanced reinforcement learning algorithm that uses a deep Q network to approximate the Q value-action function …”
    Volltext
    Journal Article
  19. 19

    Advanced EEG Signal Processing and Deep Q-Learning for Accurate Student Attention Monitoring von Ur Rehman, Asad, Ul Eman, Noor, Ullah, Farhan, Cacciagrano, Diletta, Mostarda, Leonardo, Raza, Nabeel

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: IEEE 01.01.2025
    Veröffentlicht in IEEE access (01.01.2025)
    “… This study introduces an enhanced approach that leverages advanced data preprocessing techniques and a Double Deep Q-Network (DDQN …”
    Volltext
    Journal Article
  20. 20

    EdDSA Based Network Data Authentication and Intrusion Detection System Using QDQN‐DPER With Hippopotamus Optimization von Babu, B. V. Satish, Bikku, Thulasi, Ponkumar, D. David Neels, Uma Maheswaran, S. K., Maguluri, Lakshmana Phaneendra

    ISSN: 0143-2087, 1099-1514
    Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 01.09.2025
    Veröffentlicht in Optimal control applications & methods (01.09.2025)
    “… ‐curve digital signature algorithm (EdDSA) and quantum deep Q‐learning with distributed prioritized experience replay (QDQN‐DPER …”
    Volltext
    Journal Article