Suchergebnisse - 65J20 Numerical solutions of ill-posed problems in abstract spaces

  1. 1

    Hanke–Raus rule for Landweber iteration in Banach spaces von Real, Rommel R.

    ISSN: 0029-599X, 0945-3245
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2024
    Veröffentlicht in Numerische Mathematik (01.02.2024)
    “… We consider the Landweber iteration for solving linear as well as nonlinear inverse problems in Banach spaces …”
    Volltext
    Journal Article
  2. 2

    Numerical solutions of linear ill-posed problems von Iqbal, M.

    ISSN: 1065-2469, 1476-8291
    Veröffentlicht: Taylor & Francis 01.01.2005
    Veröffentlicht in Integral transforms and special functions (01.01.2005)
    “… In this paper, a method is described for inverting the Mellin transform which uses an expansion in Laguerre polynomials and converts Mellin transform to …”
    Volltext
    Journal Article
  3. 3

    Numerical solutions to some ill-posed problems von Hoang, Nguyen Si

    ISBN: 1124866760, 9781124866765
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2011
    “… Several methods for a stable solution to the equation F( u) = f have been developed …”
    Volltext
    Dissertation
  4. 4

    On the Numerical Solution of Ill-Conditioned Linear Systems with Applications to Ill-Posed Problems von Varah, J. M.

    ISSN: 0036-1429, 1095-7170
    Veröffentlicht: Philadelphia Society for Industrial and Applied Mathematics 01.04.1973
    Veröffentlicht in SIAM journal on numerical analysis (01.04.1973)
    “… Then we indicate how this technique is especially appropriate for some classical ill-posed problems of mathematical physics …”
    Volltext
    Journal Article
  5. 5

    Pitfalls in the Numerical Solution of Linear Ill-Posed Problems von Varah, J. M.

    ISSN: 0196-5204, 1064-8275, 2168-3417, 1095-7197
    Veröffentlicht: Philadelphia Society for Industrial and Applied Mathematics 01.06.1983
    “… We examine here existence and uniqueness questions associated with so-called reasonable solutions for such problems, and present results using the best-known methods on inverse Laplace transform problems …”
    Volltext
    Journal Article
  6. 6

    On the Achievable Level of Accuracy for the Solution of Abstract Ill-Posed Problems and Nonlinear Operator Equations in a Banach Space von Kokurin, M. Yu, Bakushinsky, A. B.

    ISSN: 1066-369X, 1934-810X
    Veröffentlicht: Moscow Pleiades Publishing 01.03.2022
    Veröffentlicht in Russian mathematics (01.03.2022)
    “… It has been shown that, for a wide class of illposed problems of finding the value of a discontinuous operator by an approximately specified element …”
    Volltext
    Journal Article
  7. 7

    The numerical solution of ill-posed linear problems von MacLeod, Allan John

    Veröffentlicht: ProQuest Dissertations & Theses 01.01.1980
    Volltext
    Dissertation
  8. 8

    Numerical Methods for the Solution of Linear Ill-Posed Problems von Alqahtani, Abdulaziz

    ISBN: 9798265447746
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2022
    “… Linear ill-posed problems arise in various fields of science and engineering. Their solutions, if they exist, may not depend continuously on the observed data …”
    Volltext
    Dissertation
  9. 9

    Development of the VGF Crystal Growth Recipe: Intelligent Solutions of IllPosed Inverse Problems using Images and Numerical Data von Dropka, Natasha, Holena, Martin, Thieme, Cornelia, Chou, Ta‐Shun

    ISSN: 0232-1300, 1521-4079
    Veröffentlicht: 01.11.2023
    Veröffentlicht in Crystal research and technology (1979) (01.11.2023)
    “… ‐posed inverse problem, which violates one or more of Hadamard's well‐posedness criteria of solution existence, uniqueness, and stability …”
    Volltext
    Journal Article
  10. 10

    Truncated Singular Value Decomposition Solutions to Discrete Ill-Posed Problems with Ill-Determined Numerical Rank von Hansen, Per Christian

    ISSN: 0196-5204, 1064-8275, 2168-3417, 1095-7197
    Veröffentlicht: Philadelphia, PA Society for Industrial and Applied Mathematics 01.05.1990
    “… Tikhonov regularization is a standard method for obtaining smooth solutions to discrete ill-posed problems …”
    Volltext
    Journal Article
  11. 11

    The numerical inversion of the Laplace transform in reproducing kernel Hilbert spaces for ill-posed problems von Iqbal, M.

    ISSN: 0020-739X, 1464-5211
    Veröffentlicht: Taylor & Francis Group 01.07.2002
    “… In this paper we have converted the Laplace transform into an integral equation of the first kind of convolution type, which is an ill-posed problem, and used a statistical regularization method to solve …”
    Volltext
    Journal Article
  12. 12

    Book reviews -- The Mollification Method and the Numerical Solution of Ill-Posed Problems by D. A. Murio von Ingham, D B

    ISSN: 0010-7514, 1366-5812
    Veröffentlicht: London Taylor & Francis Ltd 01.03.1994
    Veröffentlicht in Contemporary physics (01.03.1994)
    Volltext
    Book Review
  13. 13

    ASPECTS OF THE THEORY OF TIKHONOV'S METHOD FOR THE NUMERICAL SOLUTION OF INTEGRAL EQUATIONS (ILL-POSED PROBLEMS) von GUACANEME, JULIO ENRIQUE

    ISBN: 9798641594972
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.1984
    “… The method is considered in the general context of Hilbert space. A new saturation result is established, namely that a rate of convergence of order o((delta)('2/3)), where (delta …”
    Volltext
    Dissertation
  14. 14

    ESTIMATION OF DISCONTINUOUS SOLUTIONS OF ILL-POSED PROBLEMS BY REGULARIZATION FOR SURFACE REPRESENTATIONS: NUMERICAL REALIZATION VIA MOVING GRIDS von NEUBAUER, ANDREAS

    ISBN: 9789812383662, 9789812704924, 9812383662, 9812704922, 9789814486026, 9814486027
    Veröffentlicht: WORLD SCIENTIFIC 01.04.2003
    Veröffentlicht in Recent Development In Theories And Numerics (01.04.2003)
    “… In this paper we discuss the numerical realization of a new regularization method, regularization for surface representations, which is well-suited for ill-posed problems with discontinuous solutions …”
    Volltext
    Buchkapitel
  15. 15

    Numerical solution of an ill-posed Cauchy problem for a quasilinear parabolic equation using a Carleman weight function von Klibanov, Michael V, Koshev, Nikolaj A, Li, Jingzhi, Yagola, Anatoly G

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 02.03.2016
    Veröffentlicht in arXiv.org (02.03.2016)
    “… in it. Previous publications about numerical solutions of ill-posed Cauchy problems were considering only linear equations …”
    Volltext
    Paper
  16. 16

    Towards structural analysis of solution spaces for ill-posed discrete 1D optimisation problems von Rui Gong, Gimel'farb, Georgy, Nicolescu, Radu, Delmas, Patrice

    ISSN: 2151-2191
    Veröffentlicht: IEEE 01.11.2013
    “… To obtain a single best-suited solution, an ill-posed global optimisation problem is regularised …”
    Volltext
    Tagungsbericht
  17. 17

    An iterative method to compute minimum norm solutions of ill-posed problems in Hilbert spaces von Jozi, Meisam, Karimi, Saeed, Salkuyeh, Davod Khojasteh

    ISSN: 1012-9405, 2190-7668
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2019
    Veröffentlicht in Afrika mathematica (01.09.2019)
    “… We study an algorithm to compute minimum norm solution of ill-posed problems in Hilbert spaces and investigate its regularizing properties with discrepancy principle stopping rule …”
    Volltext
    Journal Article
  18. 18

    The necessary and sufficient conditions for the qualified convergence of difference methods for approximate solution of the ill-posed Cauchy problem in a Banach space von Klyuchev, V. V.

    ISSN: 1066-369X, 1934-810X
    Veröffentlicht: Heidelberg Allerton Press, Inc 01.04.2009
    Veröffentlicht in Russian mathematics (01.04.2009)
    “… We study properties of finite-difference methods for approximate solution of the ill-posed Cauchy problem for a homogeneous equation of the first order with a sectorial operator in a Banach space …”
    Volltext
    Journal Article
  19. 19

    On the second-order asymptotical regularization of linear ill-posed inverse problems von Zhang, Y., Hofmann, B.

    ISSN: 0003-6811, 1563-504X, 1563-504X
    Veröffentlicht: Abingdon Taylor & Francis 25.04.2020
    Veröffentlicht in Applicable analysis (25.04.2020)
    “… ) method for the stable approximate solution of ill-posed linear operator equations in Hilbert spaces, which are models for linear inverse problems with applications in the natural sciences, imaging and engineering …”
    Volltext
    Journal Article
  20. 20

    A fast iterative regularization method for ill-posed problems von Bechouat, Tahar

    ISSN: 0008-0624, 1126-5434
    Veröffentlicht: Milano Springer Nature B.V 01.03.2025
    Veröffentlicht in Calcolo (01.03.2025)
    “… Ill-posed problems manifest in a wide range of scientific and engineering disciplines …”
    Volltext
    Journal Article