Suchergebnisse - 3D convolutional autoencoder*

Andere Suchmöglichkeiten:

  1. 1

    Unsupervised Spatial-Spectral Feature Learning by 3D Convolutional Autoencoder for Hyperspectral Classification von Mei, Shaohui, Ji, Jingyu, Geng, Yunhao, Zhang, Zhi, Li, Xu, Du, Qian

    ISSN: 0196-2892, 1558-0644
    Veröffentlicht: New York IEEE 01.09.2019
    Veröffentlicht in IEEE transactions on geoscience and remote sensing (01.09.2019)
    “… ) convolutional autoencoder (3D-CAE). The proposed 3D-CAE consists of 3D or elementwise operations only, such as 3D convolution, 3D pooling, and 3D batch normalization, to maximally explore spatial-spectral structure information for feature extraction …”
    Volltext
    Journal Article
  2. 2

    Spatial–Spectral Joint Hyperspectral Anomaly Detection Based on a Two-Branch 3D Convolutional Autoencoder and Spatial Filtering von Lv, Shuai, Zhao, Siwei, Li, Dandan, Pang, Boyu, Lian, Xiaoying, Liu, Yinnian

    ISSN: 2072-4292, 2072-4292
    Veröffentlicht: Basel MDPI AG 12.05.2023
    Veröffentlicht in Remote sensing (Basel, Switzerland) (12.05.2023)
    “… –spectral joint HAD method based on a two-branch 3D convolutional autoencoder and spatial filtering …”
    Volltext
    Journal Article
  3. 3

    Data‐Driven Detection of Internal Erosion Initiation in Gap‐Graded Soils: Combining Particle‐Scale CFD‐DEM Simulation With 3D Convolutional Autoencoder von Qi, Jie, Yousefpour, Negin, Narsilio, Guillermo A., Pouragha, Mehdi

    ISSN: 0363-9061, 1096-9853
    Veröffentlicht: Bognor Regis Wiley Subscription Services, Inc 01.12.2025
    “… –fluid interactions, which are used to train deep learning models. Autoencoder models with 3D convolutional neural network (CNN …”
    Volltext
    Journal Article
  4. 4

    Corrections to "Spatially Aware Fusion in 3D Convolutional Autoencoders for Video Anomaly Detection" von Niaz, Asim, Ul Amin, Sareer, Soomro, Shafiullah, Zia, Hamza, Choi, Kwang Nam

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2024
    Veröffentlicht in IEEE access (2024)
    “… Presents corrections to the paper, (Corrections to "Spatially Aware Fusion in 3D Convolutional Autoencoders for Video Anomaly Detection") …”
    Volltext
    Journal Article
  5. 5

    Spatial feature fusion in 3D convolutional autoencoders for lung tumor segmentation from 3D CT images von Najeeb, Suhail, Bhuiyan, Mohammed Imamul Hassan

    ISSN: 1746-8094, 1746-8108
    Veröffentlicht: Elsevier Ltd 01.09.2022
    Veröffentlicht in Biomedical signal processing and control (01.09.2022)
    “… In this paper, we introduce a novel approach which makes use of the spatial features learned at different levels of a 2D convolutional autoencoder to create a 3D segmentation network capable …”
    Volltext
    Journal Article
  6. 6

    Deep learning-based automated 3D inspection of helical gears using voxelized CAD models and 3D convolutional autoencoders von Selloum, Rabia, Ameddah, Hacene, Brioua, Mourad

    ISSN: 0268-3768, 1433-3015
    Veröffentlicht: London Springer London 01.12.2025
    “… We propose a voxel-based 3D inspection framework that integrates an XGBoost-guided perturbation model with a 3D convolutional autoencoder (3D CNN-AE …”
    Volltext
    Journal Article
  7. 7

    A 3D-convolutional-autoencoder embedded Siamese-attention-network for classification of hyperspectral images von Ranjan, Pallavi, Kumar, Rajeev, Girdhar, Ashish

    ISSN: 0941-0643, 1433-3058
    Veröffentlicht: London Springer London 01.05.2024
    Veröffentlicht in Neural computing & applications (01.05.2024)
    “… The classification of hyperspectral images (HSI) into categories that correlate to various land cover sorts such as water bodies, agriculture and urban areas, …”
    Volltext
    Journal Article
  8. 8

    Detecting spatiotemporal irregularities in videos via a 3D convolutional autoencoder von Yan, Mengjia, Meng, Jingjing, Zhou, Chunluan, Tu, Zhigang, Tan, Yap-Peng, Yuan, Junsong

    ISSN: 1047-3203, 1095-9076
    Veröffentlicht: Elsevier Inc 01.02.2020
    “… To this end, we introduce a 3D fully convolutional autoencoder (3D-FCAE) that is trainable in an end-to-end manner to detect both temporal and spatiotemporal irregularities in videos using limited training data …”
    Volltext
    Journal Article
  9. 9

    An Attention-Based 3D Convolutional Autoencoder for Few-Shot Hyperspectral Unmixing and Classification von Li, Chunyu, Cai, Rong, Yu, Junchuan

    ISSN: 2072-4292, 2072-4292
    Veröffentlicht: Basel MDPI AG 01.01.2023
    Veröffentlicht in Remote sensing (Basel, Switzerland) (01.01.2023)
    “… A cube-based attention 3D convolutional autoencoder network (CACAE), is applied to extract spectral–spatial features …”
    Volltext
    Journal Article
  10. 10

    Research on 3D convolutional autoencoder enhanced metro abnormal behavior detection based on multi-level attentional memory von Ye, Run, Zhang, Kun, Zhang, Cheng, Yan, Bin, Zhou, Xiaojia

    ISSN: 1573-7721, 1380-7501, 1573-7721
    Veröffentlicht: New York Springer US 01.06.2025
    Veröffentlicht in Multimedia tools and applications (01.06.2025)
    “… Subway is one of the most important rail transit tools in China, which has the advantages of convenience, safety and high efficiency, and subway has also …”
    Volltext
    Journal Article
  11. 11

    Unsupervised Satellite Image Time Series Clustering Using Object-Based Approaches and 3D Convolutional Autoencoder von Kalinicheva, Ekaterina, Sublime, Jérémie, Trocan, Maria

    ISSN: 2072-4292, 2072-4292
    Veröffentlicht: Basel MDPI AG 01.06.2020
    Veröffentlicht in Remote sensing (Basel, Switzerland) (01.06.2020)
    “… It is achieved by using a compressed SITS representation obtained with a multi-view 3D convolutional autoencoder …”
    Volltext
    Journal Article
  12. 12

    Spatially Aware Fusion in 3D Convolutional Autoencoders for Video Anomaly Detection von Niaz, Asim, Ul Amin, Sareer, Soomro, Shafiullah, Zia, Hamza, Nam Choi, Kwang

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2024
    Veröffentlicht in IEEE access (2024)
    “… The model employs a three-dimensional (3D) convolutional autoencoder, with an encoder-decoder structure that learns spatiotemporal representations and reconstructs the input through the latent space …”
    Volltext
    Journal Article
  13. 13

    Attention-based Convolutional Autoencoders for 3D-Variational Data Assimilation von Mack, Julian, Arcucci, Rossella, Molina-Solana, Miguel, Guo, Yi-Ke

    ISSN: 0045-7825, 1879-2138
    Veröffentlicht: Elsevier B.V 01.12.2020
    “… We propose a new ‘Bi-Reduced Space’ approach to solving 3D Variational Data Assimilation using Convolutional Autoencoders …”
    Volltext
    Journal Article
  14. 14

    Deep clustering using 3D attention convolutional autoencoder for hyperspectral image analysis von Zheng, Ziyou, Zhang, Shuzhen, Song, Hailong, Yan, Qi

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 20.02.2024
    Veröffentlicht in Scientific reports (20.02.2024)
    “… ) with t- distributed stochastic neighbor embedding (t-SNE). The reduced dataset is then input into a three-dimensional attention convolutional autoencoder (3D-ACAE …”
    Volltext
    Journal Article
  15. 15

    The Use of 3D Convolutional Autoencoder in Fault and Fracture Network Characterization von Xu, Feng, Li, Zhiyong, Wen, Bo, Huang, Youhui, Wang, Yaojun

    ISSN: 1468-8115, 1468-8123
    Veröffentlicht: Chichester Hindawi 2021
    Veröffentlicht in Geofluids (2021)
    “… In this paper, a fault and fracture network characterization method based on 3D convolutional autoencoder is proposed …”
    Volltext
    Journal Article
  16. 16

    Learning Unsupervised Visual Representations using 3D Convolutional Autoencoder with Temporal Contrastive Modeling for Video Retrieval von Kumar, Vidit, Tripathi, Vikas, Pant, Bhaskar

    ISSN: 2455-7749, 2455-7749
    Veröffentlicht: Dehradun International Journal of Mathematical, Engineering and Management Sciences 01.04.2022
    “… However, this paper designs and studies a 3D convolutional autoencoder …”
    Volltext
    Journal Article
  17. 17

    3D-DCDAE: Unsupervised Music Latent Representations Learning Method Based on a Deep 3D Convolutional Denoising Autoencoder for Music Genre Classification von Qiu, Lvyang, Li, Shuyu, Sung, Yunsick

    ISSN: 2227-7390, 2227-7390
    Veröffentlicht: Basel MDPI AG 01.09.2021
    Veröffentlicht in Mathematics (Basel) (01.09.2021)
    “… This paper proposes an unsupervised latent music representation learning method based on a deep 3D convolutional denoising autoencoder (3D-DCDAE …”
    Volltext
    Journal Article
  18. 18

    Robust Spectral Anomaly Detection in EELS Spectral Images via 3D Convolutional Variational Autoencoders von Sultanov, Seyfal, Ayyubi, R. A. W., Buban, James P., Klie, Robert F.

    ISSN: 1613-6810, 1613-6829, 1613-6829
    Veröffentlicht: Germany Wiley Subscription Services, Inc 01.08.2025
    Veröffentlicht in Small (Weinheim an der Bergstrasse, Germany) (01.08.2025)
    “… A 3D Convolutional Variational Autoencoder (3D‐CVAE) is introduced for automated anomaly detection in electron energy …”
    Volltext
    Journal Article
  19. 19

    3D convolutional selective autoencoder for instability detection in combustion systems von Gangopadhyay, Tryambak, Ramanan, Vikram, Akintayo, Adedotun, K Boor, Paige, Sarkar, Soumalya, Chakravarthy, Satyanarayanan R, Sarkar, Soumik

    ISSN: 2666-5468, 2666-5468
    Veröffentlicht: Elsevier Ltd 01.06.2021
    Veröffentlicht in Energy and AI (01.06.2021)
    “… highlights•A novel semi-supervised deep learning architecture for early detection of combustion instability.•Capturing transition from a stable to an unstable …”
    Volltext
    Journal Article
  20. 20

    Stable 3D Deep Convolutional Autoencoder Method for Ultrasonic Testing of Defects in Polymer Composites von Liu, Yi, Yu, Qing, Liu, Kaixin, Zhu, Ningtao, Yao, Yuan

    ISSN: 2073-4360, 2073-4360
    Veröffentlicht: Switzerland MDPI AG 31.05.2024
    Veröffentlicht in Polymers (31.05.2024)
    “… In this study, a stable three-dimensional deep convolutional autoencoder (3D-DCA) was developed to identify defects in polymer composites …”
    Volltext
    Journal Article