Suchergebnisse - 2018 IEEE/CVF Conference on Computer Vision AND Pattern Recognition*
-
1
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2018) : Salt Lake City, Utah, USA 18-22 June 2018
ISBN: 9781538664216, 1538664216Veröffentlicht: Piscataway, NJ IEEE 2018Volltext
Buch -
2
Two-stream lightweight sign language transformer
ISSN: 0932-8092, 1432-1769Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2022Veröffentlicht in Machine vision and applications (01.09.2022)“… Despite the recent progress of continuous sign language translation-based video, a variety of deep learning models are difficult to apply to the real-time …”
Volltext
Journal Article -
3
VizWiz Grand Challenge: Answering Visual Questions from Blind People
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2018Veröffentlicht in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (01.06.2018)“… The study of algorithms to automatically answer visual questions currently is motivated by visual question answering (VQA) datasets constructed in artificial …”
Volltext
Tagungsbericht -
4
Subspace-PnP: A Geometric Constraint Loss for Mutual Assistance of Depth and Optical Flow Estimation
ISSN: 0920-5691, 1573-1405Veröffentlicht: New York Springer US 01.12.2022Veröffentlicht in International journal of computer vision (01.12.2022)“… , in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 4654–4665, 2020; Ranjan et al., in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 12240 …”
Volltext
Journal Article -
5
Improving Calibration for Long-Tailed Recognition
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2021Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2021)“… Deep neural networks may perform poorly when training datasets are heavily class-imbalanced. Recently, two-stage methods decouple representation learning and …”
Volltext
Tagungsbericht -
6
Disentangling Label Distribution for Long-tailed Visual Recognition
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2021Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2021)“… The current evaluation protocol of long-tailed visual recognition trains the classification model on the long-tailed source label distribution and evaluates its performance on the uniform target label distribution …”
Volltext
Tagungsbericht -
7
MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2021Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2021)“… Real-world training data usually exhibits long-tailed distribution, where several majority classes have a significantly larger number of samples than the …”
Volltext
Tagungsbericht -
8
CVPR 2019: Call for Papers Deadline November 16: The 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition
Veröffentlicht: New York PR Newswire Association LLC 10.10.2018Veröffentlicht in PR Newswire (10.10.2018)Volltext
Newsletter -
9
On the Duality Between Retinex and Image Dehazing
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2018Veröffentlicht in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (01.06.2018)“… Retinex has been widely explored in the computer vision literature for image enhancement and other related tasks …”
Volltext
Tagungsbericht -
10
Long-Tailed Visual Recognition via Self-Heterogeneous Integration with Knowledge Excavation
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2023Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2023)“… Deep neural networks have made huge progress in the last few decades. However, as the real-world data often exhibits a long-tailed distribution, vanilla deep …”
Volltext
Tagungsbericht -
11
Collaborative Spatiotemporal Feature Learning for Video Action Recognition
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2019Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2019)“… Spatiotemporal feature learning is of central importance for action recognition in videos …”
Volltext
Tagungsbericht -
12
Hybrid Task Cascade for Instance Segmentation
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2019Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2019)“… Cascade is a classic yet powerful architecture that has boosted performance on various tasks. However, how to introduce cascade to instance segmentation …”
Volltext
Tagungsbericht -
13
Feature Denoising for Improving Adversarial Robustness
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2019Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2019)“… Adversarial attacks to image classification systems present challenges to convolutional networks and opportunities for understanding them. This study suggests …”
Volltext
Tagungsbericht -
14
Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation
ISSN: 1063-6919Veröffentlicht: IEEE 01.01.2020Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.01.2020)“… In this work, we introduce Panoptic-DeepLab, a simple, strong, and fast system for panoptic segmentation, aiming to establish a solid baseline for bottom-up …”
Volltext
Tagungsbericht -
15
Tactical Rewind: Self-Correction via Backtracking in Vision-And-Language Navigation
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2019Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2019)“… We present the Frontier Aware Search with backTracking (FAST) Navigator, a general framework for action decoding, that achieves state-of-the-art results on the 2018 Room-to-Room (R2R …”
Volltext
Tagungsbericht -
16
Improving Semantic Segmentation via Video Propagation and Label Relaxation
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2019Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2019)“… Semantic segmentation requires large amounts of pixel-wise annotations to learn accurate models. In this paper, we present a video prediction-based methodology …”
Volltext
Tagungsbericht -
17
RSG: A Simple but Effective Module for Learning Imbalanced Datasets
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2021Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2021)“… Imbalanced datasets widely exist in practice and are a great challenge for training deep neural models with a good generalization on infrequent classes. In …”
Volltext
Tagungsbericht -
18
PoTion: Pose MoTion Representation for Action Recognition
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2018Veröffentlicht in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (01.06.2018)“… Most state-of-the-art methods for action recognition rely on a two-stream architecture that processes appearance and motion independently …”
Volltext
Tagungsbericht -
19
Learning Meta Face Recognition in Unseen Domains
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2020Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2020)“… Face recognition systems are usually faced with unseen domains in real-world applications and show unsatisfactory performance due to their poor generalization …”
Volltext
Tagungsbericht -
20
Learning Imbalanced Data with Vision Transformers
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2023Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2023)“… The real-world data tends to be heavily imbalanced and severely skew the data-driven deep neural networks, which makes Long-Tailed Recognition (LTR …”
Volltext
Tagungsbericht

