Suchergebnisse - 1D convolutional autoencoder*

Andere Suchmöglichkeiten:

  1. 1

    1D-CONVOLUTIONAL AUTOENCODER BASED HYPERSPECTRAL DATA COMPRESSION von Kuester, J., Gross, W., Middelmann, W.

    ISSN: 2194-9034, 1682-1750, 2194-9034
    Veröffentlicht: Gottingen Copernicus GmbH 28.06.2021
    “… In this paper, we introduce an approach to compress hyperspectral data based on a 1D-Convolutional Autoencoder …”
    Volltext
    Journal Article Tagungsbericht
  2. 2

    1D Convolutional Autoencoder-Based PPG and GSR Signals for Real-Time Emotion Classification von Kang, Dong-Hyun, Kim, Deok-Hwan

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2022
    Veröffentlicht in IEEE access (2022)
    “… classification method, a 1d convolutional neural network autoencoder model, and a lightweight model obtained using knowledge distillation …”
    Volltext
    Journal Article
  3. 3

    Unsupervised deep learning approach for network intrusion detection combining convolutional autoencoder and one-class SVM von Binbusayyis, Adel, Vaiyapuri, Thavavel

    ISSN: 0924-669X, 1573-7497
    Veröffentlicht: New York Springer US 01.10.2021
    Veröffentlicht in Applied intelligence (Dordrecht, Netherlands) (01.10.2021)
    “… With the rapid advancement in network technologies, the need for cybersecurity has gained increasing momentum in recent years. As a primary defense mechanism, …”
    Volltext
    Journal Article
  4. 4

    OCAE-based feature extraction and cluster analysis of high-energy-consuming plant loads von Zhou, Mengran, Kong, Weile, Hu, Feng, Zhu, Ziwei, Wu, Changzhen, Wang, Ling, Zhang, Qiqi, Zhou, Guangyao

    ISSN: 0045-7906
    Veröffentlicht: Elsevier Ltd 01.11.2024
    Veröffentlicht in Computers & electrical engineering (01.11.2024)
    “… This paper proposes an optimal convolutional autoencoder (OCAE) model designed for good feature extraction …”
    Volltext
    Journal Article
  5. 5

    Denoising of Over-the-Horizon Propagation Loss Based on 1D Convolutional Autoencoder von Wu, Jiajing, Wei, Zhiqiang, Jia, Dongning, Zhang, Jinpeng, Yin, Bo, Ji, Hanjie

    ISSN: 2693-2865
    Veröffentlicht: IEEE 17.06.2022
    “… However, these systems are limited by signal noise. To address this issue, we construct a denoising model based on a one-dimensional convolutional autoencoder (1DCAE …”
    Volltext
    Tagungsbericht
  6. 6

    Automatic Baseline Correction of 1D Signals Using a Parameter-Free Deep Convolutional Autoencoder Algorithm von Górski, Łukasz, Jakubowska, Małgorzata

    ISSN: 2076-3417, 2076-3417
    Veröffentlicht: Basel MDPI AG 01.11.2025
    Veröffentlicht in Applied sciences (01.11.2025)
    “… Our new procedure, based on the Convolutional Autoencoder (ConvAuto) model and combined with an automated implementation algorithm …”
    Volltext
    Journal Article
  7. 7

    Automatic detection of epileptic seizure based on one dimensional cascaded convolutional autoencoder with adaptive window-thresholding von Aboyeji, Sunday Timothy, Wang, Xin, Chen, Yan, Ahmad, Ijaz, Li, Lin, Liu, Zhenzhen, Yao, Chen, Zhao, Guoru, Zhang, Yu, Li, Guanglin, Chen, Shixiong

    ISSN: 1741-2552, 1741-2552
    Veröffentlicht: England 01.10.2024
    Veröffentlicht in Journal of neural engineering (01.10.2024)
    “… To address this, our study introduces an unsupervised learning framework for ESD using a 1D-Cascaded Convolutional Autoencoder (1D-CasCAE …”
    Weitere Angaben
    Journal Article
  8. 8

    High-precision detection of dibutyl hydroxytoluene in edible oil via convolutional autoencoder compressed Fourier-transform near-infrared spectroscopy von Deng, Jihong, Chen, Zhenyu, Jiang, Hui, Chen, Quansheng

    ISSN: 0956-7135
    Veröffentlicht: Elsevier Ltd 01.01.2025
    Veröffentlicht in Food control (01.01.2025)
    “… In this study, a pioneering detection approach involving the use of a one-dimensional convolutional autoencoder (1D-CAE …”
    Volltext
    Journal Article
  9. 9

    A New Method for DC Transmission Line Protection Based on Deep Self-Supervised Clustering von Shan, Jieshan, Wang, Xinglong, Li, Qiang, He, Tongbo, Zhang, Shihong, Yue, Dinghui

    Veröffentlicht: IEEE 16.05.2025
    “… The method integrates a 1D convolutional autoencoder (1D-CAE) and the K-means clustering algorithm …”
    Volltext
    Tagungsbericht
  10. 10

    Sleep Stage Identification based on Single-Channel EEG Signals using 1-D Convolutional Autoencoders von Dutt, Micheal, Redhu, Surender, Goodwin, Morten, Omlin, Christian W.

    Veröffentlicht: IEEE 17.10.2022
    “… This work proposes a one-dimensional convolutional autoencoder (1D-CAE) based on a single-channel EEG signal for sleep stage identification …”
    Volltext
    Tagungsbericht
  11. 11

    Vibration-based structural anomaly detection in real-time with piezoelectric patches on a tension rod assembly von Rababah, Ahmad, Abdeljaber, Osama, Avci, Onur

    ISSN: 0888-3270, 1096-1216
    Veröffentlicht: Elsevier Ltd 01.11.2025
    Veröffentlicht in Mechanical systems and signal processing (01.11.2025)
    “… •Supervised (1D-CNN, CNN-LSTM) and unsupervised (CAE, CAE-LSTM) models are employed.•A structural health index is computed using classification outputs or reconstruction errors …”
    Volltext
    Journal Article
  12. 12

    Deep Learning Analysis of Coronary Arteries in Cardiac CT Angiography for Detection of Patients Requiring Invasive Coronary Angiography von Zreik, Majd, van Hamersvelt, Robbert W., Khalili, Nadieh, Wolterink, Jelmer M., Voskuil, Michiel, Viergever, Max A., Leiner, Tim, Isgum, Ivana

    ISSN: 0278-0062, 1558-254X, 1558-254X
    Veröffentlicht: United States IEEE 01.05.2020
    Veröffentlicht in IEEE transactions on medical imaging (01.05.2020)
    “… In patients with obstructive coronary artery disease, the functional significance of a coronary artery stenosis needs to be determined to guide treatment. This …”
    Volltext
    Journal Article
  13. 13

    MCN portfolio: An efficient portfolio prediction and selection model using multiserial cascaded network with hybrid meta-heuristic optimization algorithm von Sharma, Meeta, Sharma, Pankaj Kumar, Vijayvergia, Hemant Kumar, Garg, Amit, Agarwal, Shyam Sundar, Saxena, Varun Prakash

    ISSN: 0954-898X, 1361-6536, 1361-6536
    Veröffentlicht: England 03.07.2025
    Veröffentlicht in Network (Bristol) (03.07.2025)
    “… For forecasting the benefits of companies, a Multi-serial Cascaded Network (MCNet) is employed which constitutes of Autoencoder, 1D Convolutional Neural Network (1DCNN …”
    Volltext
    Journal Article
  14. 14

    Data-driven non-intrusive reduced order modelling of selective laser melting additive manufacturing process using proper orthogonal decomposition and convolutional autoencoder von Chaudhry, Shubham, Abdedou, Azzedine, Soulaïmani, Azzeddine

    ISSN: 2213-7467, 2213-7467
    Veröffentlicht: Cham Springer International Publishing 01.12.2025
    “… Conversely, the CAE-MLP model employs a 1D convolutional autoencoder to reduce the spatial dimension of a high-fidelity snapshot matrix derived from numerical simulations …”
    Volltext
    Journal Article
  15. 15

    Reduced-order modeling for stochastic large-scale and time-dependent flow problems using deep spatial and temporal convolutional autoencoders von Abdedou, Azzedine, Soulaimani, Azzeddine

    ISSN: 2213-7467, 2213-7467
    Veröffentlicht: Cham Springer International Publishing 19.05.2023
    “… The method uses a 1D-convolutional autoencoder to reduce the spatial dimension of the unstructured meshes used by the flow solver …”
    Volltext
    Journal Article
  16. 16

    Integrating single-cell multimodal epigenomic data using 1D convolutional neural networks von Gao, Chao, Welch, Joshua D

    ISSN: 1367-4811, 1367-4803, 1367-4811
    Veröffentlicht: England Oxford University Press 26.12.2024
    Veröffentlicht in Bioinformatics (Oxford, England) (26.12.2024)
    “… Results We developed ConvNet-VAEs, a novel framework that uses one-dimensional (1D) convolutional variational autoencoders (VAEs …”
    Volltext
    Journal Article
  17. 17

    Convolutional neural networks for mapping of lake sediment core particle size using hyperspectral imaging von Ghanbari, Hamid, Antoniades, Dermot

    ISSN: 1569-8432, 1872-826X
    Veröffentlicht: Elsevier B.V 01.08.2022
    “… •Using of convolutional autoencoders feature extraction method.•Combination of HSIs and deep learning methods to replace the measurements from laser granulometry …”
    Volltext
    Journal Article
  18. 18

    One-dimensional deep convolutional autoencoder active infrared thermography: Enhanced visualization of internal defects in FRP composites von Zhang, Yubin, Xu, Changhang, Liu, Pengqian, Xie, Jing, Han, Yage, Liu, Rui, Chen, Lina

    ISSN: 1359-8368, 1879-1069
    Veröffentlicht: Elsevier Ltd 01.03.2024
    Veröffentlicht in Composites. Part B, Engineering (01.03.2024)
    “… To address this issue, this study proposes a novel method called one-dimensional deep convolutional autoencoder active infrared thermography (1D-DCAE-AIRT …”
    Volltext
    Journal Article
  19. 19

    Predictive maintenance for offshore oil wells by means of deep learning features extraction von Gatta, Federico, Giampaolo, Fabio, Chiaro, Diletta, Piccialli, Francesco

    ISSN: 0266-4720, 1468-0394
    Veröffentlicht: Oxford Blackwell Publishing Ltd 01.02.2024
    Veröffentlicht in Expert systems (01.02.2024)
    “… Nowadays, the great diffusion of the Internet of Things and the improvements in Artificial Intelligence techniques have given a rise in the development and …”
    Volltext
    Journal Article
  20. 20

    Reconstruction of pile-up events using a one-dimensional convolutional autoencoder for the NEDA detector array von Deltoro, J. M., Jaworski, G., Goasduff, A., González, V., Gadea, A., Palacz, M., Valiente-Dobón, J. J., Nyberg, J., Casans, S., Navarro-Antón, A. E., Sanchis, E., de Angelis, G., Boujrad, A., Coudert, S., Dupasquier, T., Ertürk, S., Stezowski, O., Wadsworth, R.

    ISSN: 1001-8042, 2210-3147, 2210-3147
    Veröffentlicht: Singapore Springer Nature Singapore 01.02.2025
    Veröffentlicht in Nuclear science and techniques (01.02.2025)
    “… ) using an one-dimensional convolutional autoencoder (1D-CAE). The datasets for training and testing the 1D-CAE are created from data acquired from the NEDA …”
    Volltext
    Journal Article