Výsledky vyhledávání - • Theory of computation → Distributed algorithms
-
1
On implementing SWMR registers from SWSR registers in systems with Byzantine failures
ISSN: 0178-2770, 1432-0452Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2024Vydáno v Distributed computing (01.06.2024)“…The implementation of registers from (potentially) weaker registers is a classical problem in the theory of distributed computing. Since Lamport’s pioneering work…”
Získat plný text
Journal Article -
2
IFHE: Intermediate-Feature Heterogeneity Enhancement for Image Synthesis in Data-Free Knowledge Distillation
Vydáno: IEEE 09.07.2023Vydáno v 2023 60th ACM/IEEE Design Automation Conference (DAC) (09.07.2023)“…Data-free knowledge distillation (DFKD) explores training a compact student network only by a pre-trained teacher without real data. Prevailing DFKD methods…”
Získat plný text
Konferenční příspěvek -
3
AdaGL: Adaptive Learning for Agile Distributed Training of Gigantic GNNs
Vydáno: IEEE 09.07.2023Vydáno v 2023 60th ACM/IEEE Design Automation Conference (DAC) (09.07.2023)“…Distributed GNN training on contemporary massive and densely connected graphs requires information aggregation from all neighboring nodes, which leads to an explosion of inter-server communications…”
Získat plný text
Konferenční příspěvek -
4
Network-Offloaded Bandwidth-Optimal Broadcast and Allgather for Distributed AI
Vydáno: IEEE 17.11.2024Vydáno v SC24: International Conference for High Performance Computing, Networking, Storage and Analysis (17.11.2024)“…In the Fully Sharded Data Parallel (FSDP) training pipeline, collective operations can be interleaved to maximize the communication/computation overlap…”
Získat plný text
Konferenční příspěvek -
5
Asynchronous Distributed-Memory Parallel Algorithms for Influence Maximization
Vydáno: IEEE 17.11.2024Vydáno v SC24: International Conference for High Performance Computing, Networking, Storage and Analysis (17.11.2024)“… We propose distributed-memory parallel algorithms for the two main kernels of a state-of-the-art implementation of one IM algorithm, influence maximization via martingales (IMM…”
Získat plný text
Konferenční příspěvek -
6
Submodularity of Distributed Join Computation
ISSN: 0730-8078Vydáno: United States 01.06.2018Vydáno v Proceedings - ACM-SIGMOD International Conference on Management of Data (01.06.2018)“…We study distributed equi-join computation in the presence of join-attribute skew, which causes load imbalance…”
Zjistit podrobnosti o přístupu
Journal Article -
7
NEO-DNND: Communication-Optimized Distributed Nearest Neighbor Graph Construction
Vydáno: IEEE 17.11.2024Vydáno v SC24-W: Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis (17.11.2024)“…Graph-based approximate nearest neighbor algorithms have shown high neighbor structure representation quality…”
Získat plný text
Konferenční příspěvek -
8
DS-GL: Advancing Graph Learning via Harnessing Nature's Power within Scalable Dynamical Systems
Vydáno: IEEE 29.06.2024Vydáno v 2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA) (29.06.2024)“… problems and have been adopted for traditional graph computation, such as max-cut. However, when performing complex Graph Learning (GL…”
Získat plný text
Konferenční příspěvek -
9
MDLoader: A Hybrid Model-Driven Data Loader for Distributed Graph Neural Network Training
Vydáno: IEEE 17.11.2024Vydáno v SC24-W: Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis (17.11.2024)“…Scalable data management is essential for processing large scientific dataset on HPC platforms for distributed deep learning…”
Získat plný text
Konferenční příspěvek -
10
Gluon-Async: A Bulk-Asynchronous System for Distributed and Heterogeneous Graph Analytics
ISSN: 2641-7936Vydáno: IEEE 01.09.2019Vydáno v Proceedings / International Conference on Parallel Architectures and Compilation Techniques (01.09.2019)“…Distributed graph analytics systems for CPUs, like D-Galois and Gemini, and for GPUs, like D-IrGL and Lux, use a bulk-synchronous parallel (BSP…”
Získat plný text
Konferenční příspěvek -
11
Enumeration of Billions of Maximal Bicliques in Bipartite Graphs without Using GPUs
Vydáno: IEEE 17.11.2024Vydáno v SC24: International Conference for High Performance Computing, Networking, Storage and Analysis (17.11.2024)“… To overcome this limitation, we propose an AdaMBE algorithm. First, we redesign its core operations using local neighborhood information derived from computational subgraphs to minimize redundant memory accesses…”
Získat plný text
Konferenční příspěvek -
12
BLOwing Trees to the Ground: Layout Optimization of Decision Trees on Racetrack Memory
Vydáno: IEEE 05.12.2021Vydáno v 2021 58th ACM/IEEE Design Automation Conference (DAC) (05.12.2021)“…Modern distributed low power systems tend to integrate machine learning algorithms, which are directly executed on the distributed devices (on the edge…”
Získat plný text
Konferenční příspěvek -
13
Accelerating Distributed DLRM Training with Optimized TT Decomposition and Micro-Batching
Vydáno: IEEE 17.11.2024Vydáno v SC24: International Conference for High Performance Computing, Networking, Storage and Analysis (17.11.2024)“…Deep Learning Recommendation Models (DLRMs) are pivotal in various sectors, yet they are hindered by the high memory demands of embedding tables and the significant communication overhead in distributed training environments…”
Získat plný text
Konferenční příspěvek -
14
PacTrain: Pruning and Adaptive Sparse Gradient Compression for Efficient Collective Communication in Distributed Deep Learning
Vydáno: IEEE 22.06.2025Vydáno v 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“… As DNNs and datasets grow, distributed training becomes extremely time-consuming and demands larger clusters…”
Získat plný text
Konferenční příspěvek -
15
Efficient Algorithm for the Computation of the Solution to a Sparse Matrix Equation in Distributed Control Theory
ISSN: 2227-7390, 2227-7390Vydáno: Basel MDPI AG 01.07.2021Vydáno v Mathematics (Basel) (01.07.2021)“…In this short communication, an algorithm for efficiently solving a sparse matrix equation, which arises frequently in the field of distributed control and estimation theory, is proposed…”
Získat plný text
Journal Article -
16
A Scalable Algorithm for Active Learning
Vydáno: IEEE 17.11.2024Vydáno v SC24: International Conference for High Performance Computing, Networking, Storage and Analysis (17.11.2024)“…FIRAL is a recently proposed deterministic active learning algorithm for multiclass classification using logistic regression…”
Získat plný text
Konferenční příspěvek -
17
Reshaping High Energy Physics Applications for Near-Interactive Execution Using TaskVine
Vydáno: IEEE 17.11.2024Vydáno v SC24: International Conference for High Performance Computing, Networking, Storage and Analysis (17.11.2024)“…High energy physics experiments produce petabytes of data annually that must be reduced to gain insight into the laws of nature. Early-stage reduction executes…”
Získat plný text
Konferenční příspěvek -
18
Enforcing Crash Consistency of Evolving Network Analytics in Non-Volatile Main Memory Systems
ISSN: 2641-7936Vydáno: IEEE 01.09.2019Vydáno v Proceedings / International Conference on Parallel Architectures and Compilation Techniques (01.09.2019)“…Evolving graph processing has enabled the modeling of many complex network systems, e.g., online social networks and gene networks. Existing in-memory graph…”
Získat plný text
Konferenční příspěvek -
19
Optimizing Distributed ML Communication with Fused Computation-Collective Operations
Vydáno: IEEE 17.11.2024Vydáno v SC24: International Conference for High Performance Computing, Networking, Storage and Analysis (17.11.2024)“…Machine learning models are distributed across multiple nodes using numerous parallelism strategies…”
Získat plný text
Konferenční příspěvek -
20
TorchGT: A Holistic System for Large-Scale Graph Transformer Training
Vydáno: IEEE 17.11.2024Vydáno v SC24: International Conference for High Performance Computing, Networking, Storage and Analysis (17.11.2024)“… TORCHGT optimizes training at three different levels. At algorithm level, by harnessing the graph sparsity, TORCHGT introduces a Dual-interleaved Attention which is computation-efficient and accuracy-maintained…”
Získat plný text
Konferenční příspěvek