Suchergebnisse - (dynamic OR dynamika) graph conventional autoencoder

Andere Suchmöglichkeiten:

  1. 1

    Multi-objective drug design with a scaffold-aware variational autoencoder von Dong, Tiejun, You, Linlin, Chen, Calvin Yu-Chian

    ISSN: 2041-6520, 2041-6539
    Veröffentlicht: England Royal Society of Chemistry 23.07.2025
    Veröffentlicht in Chemical science (Cambridge) (23.07.2025)
    “… To tackle this, we have developed ScafVAE, an innovative scaffold-aware variational autoencoder designed for the in silico graph-based generation of multi-objective drug candidates …”
    Volltext
    Journal Article
  2. 2

    Spatio-temporal graph convolutional autoencoder for transonic wing pressure distribution forecasting von Immordino, Gabriele, Vaiuso, Andrea, Da Ronch, Andrea, Righi, Marcello

    ISSN: 1270-9638
    Veröffentlicht: Elsevier Masson SAS 01.10.2025
    Veröffentlicht in Aerospace science and technology (01.10.2025)
    “… This study presents a framework for predicting unsteady transonic wing pressure distributions due to pitch and plunge movement, integrating an autoencoder architecture with graph convolutional …”
    Volltext
    Journal Article
  3. 3

    Detection of False Data Injection Attacks in Cyber-Physical Power Systems: An Adaptive Adversarial Dual Autoencoder With Graph Representation Learning Approach von Feng, Hantong, Han, Yinghua, Si, Fangyuan, Zhao, Qiang

    ISSN: 0018-9456, 1557-9662
    Veröffentlicht: New York IEEE 2024
    “… Inspired by the recent advances in deep learning, we propose a novel unsupervised method for FDIAs detection by combining the complementary strengths of dual graph-convolutional autoencoder (DAE …”
    Volltext
    Journal Article
  4. 4
  5. 5

    A survey on anomaly detection for technical systems using LSTM networks von Lindemann, Benjamin, Maschler, Benjamin, Sahlab, Nada, Weyrich, Michael

    ISSN: 0166-3615, 1872-6194
    Veröffentlicht: Elsevier B.V 01.10.2021
    Veröffentlicht in Computers in industry (01.10.2021)
    “… Conventional detection approaches rely on statistical and time-invariant methods that fail to address the complex and dynamic nature of anomalies …”
    Volltext
    Journal Article
  6. 6

    Entropy-enhanced batch sampling and conformal learning in VGAE for physics-informed causal discovery and fault diagnosis von Modirrousta, Mohammadhossein, Memarian, Alireza, Huang, Biao

    ISSN: 0098-1354
    Veröffentlicht: Elsevier Ltd 01.06.2025
    Veröffentlicht in Computers & chemical engineering (01.06.2025)
    “… ) in complex industrial processes. This research introduces a novel approach to causal discovery and FDD using Variational Graph Autoencoders (VGAEs …”
    Volltext
    Journal Article
  7. 7

    Multi-Task Graph Attention Net for Electricity Consumption Prediction and Anomaly Detection von Bai, Na, Zhang, Jian, Wu, Zhaoli

    ISSN: 2073-431X, 2073-431X
    Veröffentlicht: Basel MDPI AG 26.08.2025
    Veröffentlicht in Computers (Basel) (26.08.2025)
    “… these dynamic variations or quantify environmental impacts. This limitation results in a compromised prediction accuracy and ambiguous anomaly identification …”
    Volltext
    Journal Article
  8. 8

    Open-world structured sequence learning via dense target encoding von Zhang, Qin, Liu, Ziqi, Li, Qincai, Xiang, Haolong, Yu, Zhizhi, Chen, Junyang, Zhang, Peng, Chen, Xiaojun

    ISSN: 0020-0255
    Veröffentlicht: Elsevier Inc 01.10.2024
    Veröffentlicht in Information sciences (01.10.2024)
    “… Structured sequences are popularly used to describe graph data with time-evolving node features and edges …”
    Volltext
    Journal Article
  9. 9

    Quantum deep learning-enhanced ethereum blockchain for cloud security: intrusion detection, fraud prevention, and secure data migration von Nagarjun, A. Venkata, Rajkumar, Sujatha

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 05.11.2025
    Veröffentlicht in Scientific reports (05.11.2025)
    “… Conventional blockchain security methods suffer from poor scalability and dynamic threat analysis …”
    Volltext
    Journal Article
  10. 10

    A Comprehensive Method for Anomaly Detection in Complex Dynamic IoT Systems von Andrii Liashenko, Larysa Globa

    ISSN: 2199-8876
    Veröffentlicht: Anhalt University of Applied Sciences 01.04.2025
    “… Modern dynamic systems, such as transportation networks and IoT infrastructures, generate massive volumes of interrelated temporal data represented as temporal graphs …”
    Volltext
    Journal Article
  11. 11

    Real-Time Anomalous Activity Detection in Surveillance Videos von Susitra, D, Reddy, Sathi Abhinay, Prasanth, Sajjala, Dhanalakshmi, K, J, Sylvia Grace, Shamreen Ahamed, B

    Veröffentlicht: IEEE 12.03.2025
    “… In this paper, a robust spatio temporal auto encoder framework that takes advantage of spatial structure as well as temporal dynamics in video sequences and dynamic thresholding for anomaly detection is developed …”
    Volltext
    Tagungsbericht
  12. 12

    Variational Graph Convolutional Networks for Dynamic Graph Representation Learning von Mir, Aabid A., Zuhairi, Megat F., Musa, Shahrulniza, Alanazi, Meshari H., Namoun, Abdallah

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2024
    Veröffentlicht in IEEE access (2024)
    “… The ubiquitous and ever-evolving nature of cyber threats demands innovative approaches that can adapt to the dynamic relationships and structures within network data …”
    Volltext
    Journal Article
  13. 13

    DOLPHIN advances single-cell transcriptomics beyond gene level by leveraging exon and junction reads von Song, Kailu, Zheng, Yumin, Zhao, Bowen, Eidelman, David H., Tang, Jian, Ding, Jun

    ISSN: 2041-1723, 2041-1723
    Veröffentlicht: London Nature Publishing Group UK 04.07.2025
    Veröffentlicht in Nature communications (04.07.2025)
    “… These graphs are processed by a variational graph autoencoder to improve cell embeddings. DOLPHIN not only demonstrates superior performance in cell …”
    Volltext
    Journal Article
  14. 14

    Uncertainty-Aware Fault Diagnosis of Rotating Compressors Using Dual-Graph Attention Networks von Lee, Seungjoo, Kim, YoungSeok, Choi, Hyun-Jun, Ji, Bongjun

    ISSN: 2075-1702, 2075-1702
    Veröffentlicht: Basel MDPI AG 01.08.2025
    Veröffentlicht in Machines (Basel) (01.08.2025)
    “… While Graph Attention Network (GAT) frameworks are widely available, this study advances the state of the art by introducing a Bayesian GAT method specifically tailored for vibration-based compressor fault diagnosis …”
    Volltext
    Journal Article
  15. 15

    Latent‐space Dynamics for Reduced Deformable Simulation von Fulton, Lawson, Modi, Vismay, Duvenaud, David, Levin, David I. W., Jacobson, Alec

    ISSN: 0167-7055, 1467-8659
    Veröffentlicht: Oxford Blackwell Publishing Ltd 01.05.2019
    Veröffentlicht in Computer graphics forum (01.05.2019)
    “… We propose the first reduced model simulation framework for deformable solid dynamics using autoencoder neural networks. We provide a data …”
    Volltext
    Journal Article
  16. 16

    Robust Wireless Localization in UAV Swarm Networks: A Deep-Graph-Generator-Assisted Convex Optimization Approach von Chen, Yu-Jia, Huang, Hai-Yan, Chen, Min-Wei, Ku, Meng-Lin

    ISSN: 2327-4662, 2327-4662
    Veröffentlicht: Piscataway IEEE 15.10.2025
    Veröffentlicht in IEEE internet of things journal (15.10.2025)
    “… However, conventional global positioning system or radio frequency-based localization systems often do not function effectively in highly dynamic and unstable mobile ad-hoc environments …”
    Volltext
    Journal Article
  17. 17

    Collaborative optimization of dynamic early warning and control in desulphurization process via integration of causal inference and temporal features von Li, He, Yang, Bozhi, Gu, Xinyu

    ISSN: 0008-4034, 1939-019X
    Veröffentlicht: 03.11.2025
    Veröffentlicht in Canadian journal of chemical engineering (03.11.2025)
    “… The inherent time‐lag effects, nonlinear dependencies, and dynamic coupling mechanisms in desulphurization processes pose significant challenges to precise quality prediction and proactive control …”
    Volltext
    Journal Article
  18. 18

    DeepCovPG:Deep-Learning-based Dynamic Covariance Prediction in Pose Graphs for Ultra-Wideband-Aided UAV Positioning von Arjmandi, Zahra, Kang, Jungwon, Sohn, Gunho, Armenakis, Costas, Shahbazi, Mozhdeh

    ISSN: 2161-8089
    Veröffentlicht: IEEE 28.08.2024
    “… This approach integrates a dynamic covariance model within the pose graph optimization process, diverges from conventional static uncertainty approaches, enhancing adaptability to environmental …”
    Volltext
    Tagungsbericht
  19. 19

    Detecting Anomalies in Dynamic Graphs via Memory enhanced Normality von Liu, Jie, Shang, Xuequn, Han, Xiaolin, Zheng, Kai, Yin, Hongzhi

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 15.08.2024
    Veröffentlicht in arXiv.org (15.08.2024)
    “… Anomaly detection in dynamic graphs presents a significant challenge due to the temporal evolution of graph structures and attributes …”
    Volltext
    Paper
  20. 20

    Editorial von Gütl, Christian

    ISSN: 0948-695X, 0948-6968
    Veröffentlicht: 28.09.2025
    Veröffentlicht in JUCS - Journal of Universal Computer Science (28.09.2025)
    “… Dear Readers, Welcome to another J.UCS regular issue covering 5 articles on topical research areas in computer science. As part of our continuous improvement …”
    Volltext
    Journal Article