Search Results - (Symbolic–numeric OR Symbolic–numericka) sparse interpolation~
Search alternatives:
- (Symbolic–numeric OR Symbolic–numericka) sparse interpolation »
-
1
Symbolic–numeric sparse interpolation of multivariate polynomials
ISSN: 0747-7171, 1095-855XPublished: Elsevier Ltd 01.08.2009Published in Journal of symbolic computation (01.08.2009)“…We consider the problem of sparse interpolation of an approximate multivariate black-box polynomial in floating point arithmetic…”
Get full text
Journal Article -
2
A new algorithm for sparse interpolation of multivariate polynomials
ISSN: 0304-3975, 1879-2294Published: Elsevier B.V 17.12.2008Published in Theoretical computer science (17.12.2008)“…To reconstruct a black box multivariate sparse polynomial from its floating point evaluations, the existing algorithms need to know upper bounds for both the number of terms in the polynomial…”
Get full text
Journal Article -
3
Error Correction for Symbolic and Hybrid Symbolic-Numeric Sparse Interpolation Algorithms
ISBN: 1303546876, 9781303546877Published: ProQuest Dissertations & Theses 01.01.2013“…We introduce error correction to two problems of sparse polynomial interpolation…”
Get full text
Dissertation -
4
What is Hybrid Symbolic-Numeric Computation?
ISBN: 1467302074, 9781467302074Published: IEEE 01.09.2011Published in 2011 13th International Symposium on Symbolic and Numeric Algorithms (01.09.2011)“…Hybrid symbolic-numeric computation constitutes the Fifth of my "Seven Dwarfs" of Symbolic Computation [1…”
Get full text
Conference Proceeding -
5
A new algorithm for sparse interpolation of multivariate polynomials: Symbolic-Numerical Computations
ISSN: 0304-3975Published: Oxford Elsevier 2008Published in Theoretical computer science (2008)Get full text
Journal Article -
6
Tropical algebraic geometry in Maple: A preprocessing algorithm for finding common factors for multivariate polynomials with approximate coefficients
ISSN: 0747-7171, 1095-855XPublished: Elsevier Ltd 01.07.2011Published in Journal of symbolic computation (01.07.2011)“…Finding a common factor of two multivariate polynomials with approximate coefficients is a problem in symbolic–numeric computing…”
Get full text
Journal Article

