Výsledky vyhľadávania - "variational autoencoder-generative adversarial network"
-
1
Dual-Encoder VAE-GAN With Spatiotemporal Features for Emotional EEG Data Augmentation
ISSN: 1534-4320, 1558-0210, 1558-0210“… To tackle this problem, a dual encoder variational autoencoder-generative adversarial network (DEVAE-GAN…”Vydavateľské údaje: United States IEEE 2023
Získať plný text
Journal Article -
2
Residual-Enhanced VAE-GAN for EEG Data Augmentation in Motor Imagery Classification
ISSN: 2575-8284Vydavateľské údaje: IEEE 16.07.2025Vydané v IEEE International Conference on Consumer Electronics-China (Online) (16.07.2025)“… generalization, this paper proposes an EEG data augmentation method, termed Residual-Enhanced Variational Autoencoder-Generative Adversarial Network (REVG…”
Získať plný text
Konferenčný príspevok.. -
3
Nonparametric Quickest Change Detection for High Dimensional Sequetial Data
ISBN: 1658421981, 9781658421980Vydavateľské údaje: ProQuest Dissertations & Theses 01.01.2020“… that occurs in the system, and the goal is to detect the change as quickly as possible subject to a false alarm…”
Získať plný text
Dissertation -
4
Generative artificial intelligence: synthetic datasets in dentistry
ISSN: 2056-807X, 2056-807XVydavateľské údaje: London Nature Publishing Group UK 01.03.2024Vydané v BDJ open (01.03.2024)“… The main hindrance in the progress of AI is access to diverse datasets which train DL models ensuring optimal performance, comparable to subject experts…”
Získať plný text
Journal Article -
5
Deep Learning Approaches for Data Augmentation in Medical Imaging: A Review
ISSN: 2313-433X, 2313-433XVydavateľské údaje: Switzerland MDPI AG 01.04.2023Vydané v Journal of imaging (01.04.2023)“…: variational autoencoders, generative adversarial networks, and diffusion…”
Získať plný text
Journal Article -
6
Deep Learning Approaches for Data Augmentation in Medical Imaging: A Review
ISSN: 2331-8422Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 24.07.2023Vydané v arXiv.org (24.07.2023)“…: variational autoencoders, generative adversarial networks, and diffusion…”
Získať plný text
Paper

