Výsledky vyhledávání - "supervised variational autoencoder"

  • Zobrazuji výsledky 1 - 12 z 12
Upřesnit hledání
  1. 1

    A Supervised Variational Autoencoder for Incomplete Multi‐View Classification Autor Xu, Yi, Chen, Anchi

    ISSN: 0266-4720, 1468-0394
    Vydáno: 01.01.2026
    Vydáno v Expert systems (01.01.2026)
    “…Although significant progress has been made in multi‐view classification over the past few decades, handling multi‐view data with arbitrary view missing is…”
    Získat plný text
    Journal Article
  2. 2

    Adversarial Attack Type I: Cheat Classifiers by Significant Changes Autor Tang, Sanli, Huang, Xiaolin, Chen, Mingjian, Sun, Chengjin, Yang, Jie

    ISSN: 0162-8828, 1939-3539, 2160-9292, 1939-3539
    Vydáno: United States IEEE 01.03.2021
    “…Despite the great success of deep neural networks, the adversarial attack can cheat some well-trained classifiers by small permutations. In this paper, we…”
    Získat plný text
    Journal Article
  3. 3

    Spatial and temporal downscaling schemes to reconstruct high-resolution GRACE data: A case study in the Tarim River Basin, Northwest China Autor Xue, Dongping, Gui, Dongwei, Ci, Mengtao, Liu, Qi, Wei, Guanghui, Liu, Yunfei

    ISSN: 0048-9697, 1879-1026, 1879-1026
    Vydáno: Elsevier B.V 10.01.2024
    Vydáno v The Science of the total environment (10.01.2024)
    “…Climate change and excessive exploitation of water resources exert pressure on groundwater supply and the ecosystem in drylands. Although The Gravity Recovery…”
    Získat plný text
    Journal Article
  4. 4

    A supervised variational autoencoder framework for dimensionality reduction and predictive modeling in high-dimensional socioeconomic data Autor Xue, Pei, Li, Tianshun

    ISSN: 2949-9488, 2949-9488
    Vydáno: Elsevier B.V 2026
    “…We introduce an estimation framework utilizing a Supervised Variational Autoencoder (SVAE) to address challenges posed by high-dimensional socioeconomic data…”
    Získat plný text
    Journal Article
  5. 5
  6. 6

    Developing semi-supervised variational autoencoder-generative adversarial network models to enhance quality prediction performance Autor Ooi, Sai Kit, Tanny, Dave, Chen, Junghui, Wang, Kai

    ISSN: 0169-7439, 1873-3239
    Vydáno: Elsevier B.V 15.10.2021
    “…One common serious issue of training a prediction model is that the process data significantly outnumber the quality data. Such discrepancy exists because of…”
    Získat plný text
    Journal Article
  7. 7

    Adversarial Training-Based Deep Layer-Wise Probabilistic Network for Enhancing Soft Sensor Modeling of Industrial Processes Autor Xie, Yongfang, Wang, Jie, Xie, Shiwen, Chen, Xiaofang

    ISSN: 2168-2216, 2168-2232
    Vydáno: New York IEEE 01.02.2024
    “…Improving the robustness of the soft sensor model of industrial processes is an important yet challenging problem for a large amount of noise interference and…”
    Získat plný text
    Journal Article
  8. 8

    Semi-Supervised Variational Autoencoder for Cell Feature Extraction In Multiplexed Immunofluorescence Images Autor Sandarenu, Piumi, Chen, Julia, Slapetova, Iveta, Browne, Lois, Graham, Peter H., Swarbrick, Alexander, Millar, Ewan K.A., Song, Yang, Meijering, Erik

    ISSN: 1945-8452
    Vydáno: IEEE 27.05.2024
    “…Advancements in digital imaging technologies have sparked increased interest in using multiplexed immunofluorescence (mIF) images to visualise and identify the…”
    Získat plný text
    Konferenční příspěvek
  9. 9

    Deep Feature Learning for Multi-Omics Clustering Using Supervised Variational Autoencoders with Clinical Information Autor Shi, Tianyi, Ye, Xiucai, Sakurai, Tetsuya

    ISSN: 2161-4407
    Vydáno: IEEE 30.06.2025
    “…Identifying cancer subtypes through multi-omics clustering holds potential to advance cancer research by uncovering subtype-specific mechanisms. Most existing…”
    Získat plný text
    Konferenční příspěvek
  10. 10

    Soft Sensor Method based on Quality-related Virtual Sample Generation and Sample-weighted Learning Autor Dong, Shuang, Jin, Huaiping, Wang, Bin, Yang, Biao, Liu, Haipeng

    ISSN: 2767-9861
    Vydáno: IEEE 17.05.2024
    “…In process industry, data-driven soft sensor often faces the problem of data shortage in modeling due to factors such as high cost of label samples acquisition…”
    Získat plný text
    Konferenční příspěvek
  11. 11

    Supervised and semi-supervised probabilistic learning with deep neural networks for concurrent process-quality monitoring Autor Wang, Kai, Yuan, Xiaofeng, Chen, Junghui, Wang, Yalin

    ISSN: 0893-6080, 1879-2782, 1879-2782
    Vydáno: United States Elsevier Ltd 01.04.2021
    Vydáno v Neural networks (01.04.2021)
    “…Concurrent process-quality monitoring helps discover quality-relevant process anomalies and quality-irrelevant process anomalies. It especially works well in…”
    Získat plný text
    Journal Article
  12. 12

    Learning Interpretable and Robust Spatiotemporal Dynamics from fMRI for Precise Identification of Neurological Disorders Autor Li, Youhao, Huang, Yongzhi, Gao, Qingchen, Chen, Pindong, Liu, Yong, Tu, Liyun

    ISSN: 2156-1133
    Vydáno: IEEE 03.12.2024
    “…Resting-state functional magnetic resonance imaging (rs-fMRI) has significantly advanced the diagnosis of brain diseases. However, existing methods are…”
    Získat plný text
    Konferenční příspěvek