Suchergebnisse - "subexponential-time algorithm"
-
1
A subexponential-time algorithm for the Maximum Independent Set Problem in Pt-free graphs
ISSN: 0166-218X, 1872-6771Veröffentlicht: Elsevier B.V 20.11.2017Veröffentlicht in Discrete Applied Mathematics (20.11.2017)“… The Maximum Independent Set Problem is known to be NP-hard in general. In the last decades lots of effort were spent to find polynomial-time algorithms for …”
Volltext
Journal Article -
2
Tight bounds for parameterized complexity of Cluster Editing with a small number of clusters
ISSN: 0022-0000, 1090-2724Veröffentlicht: Elsevier Inc 01.11.2014Veröffentlicht in Journal of computer and system sciences (01.11.2014)“… In the Cluster Editing problem, also known as Correlation Clustering, we are given an undirected n-vertex graph G and a positive integer k. The task is to …”
Volltext
Journal Article -
3
The Complexity of Tree Partitioning
ISSN: 0178-4617, 1432-0541Veröffentlicht: New York Springer US 01.09.2020Veröffentlicht in Algorithmica (01.09.2020)“… Given a tree T on n vertices, and k , b , s 1 , … , s b ∈ N , the Tree Partitioning problem asks if at most k edges can be removed from T so that the …”
Volltext
Journal Article -
4
A transfer method from bounded existential Diophantine equations to Tarski algebra formulas
ISSN: 0304-3975, 1879-2294Veröffentlicht: Elsevier B.V 17.01.2018Veröffentlicht in Theoretical computer science (17.01.2018)“… We identify a transfer method from bounded existentially quantified Diophantine equations to formulas of Tarski algebra, the first order theory of the real …”
Volltext
Journal Article -
5
Subexponential LPs Approximate Max-Cut
ISSN: 2575-8454Veröffentlicht: IEEE 01.11.2020Veröffentlicht in Proceedings / annual Symposium on Foundations of Computer Science (01.11.2020)“… We show that for every \varepsilon > 0 , the degree -n^{\varepsilon} Sherali-Adams linear program (with \exp(\tilde{O}(n^{\varepsilon}) ) variables and …”
Volltext
Tagungsbericht -
6
Independent Set, Induced Matching, and Pricing: Connections and Tight (Subexponential Time) Approximation Hardnesses
ISSN: 0272-5428Veröffentlicht: IEEE 01.10.2013Veröffentlicht in Annual Symposium on Foundations of Computer Science (01.10.2013)“… We present a series of almost settled inapproximability results for three fundamental problems. The first in our series is the subexponential-time …”
Volltext
Tagungsbericht