Výsledky vyhľadávania - "robotics and automation"
-
1
Safe Control With Learned Certificates: A Survey of Neural Lyapunov, Barrier, and Contraction Methods for Robotics and Control
ISSN: 1552-3098, 1941-0468Vydavateľské údaje: New York IEEE 01.06.2023Vydané v IEEE transactions on robotics (01.06.2023)“…Learning-enabled control systems have demonstrated impressive empirical performance on challenging control problems in robotics, but this performance comes at…”
Získať plný text
Journal Article -
2
Cat-Like Jumping and Landing of Legged Robots in Low Gravity Using Deep Reinforcement Learning
ISSN: 1552-3098, 1941-0468Vydavateľské údaje: New York IEEE 01.02.2022Vydané v IEEE transactions on robotics (01.02.2022)“…In this article, we show that learned policies can be applied to solve legged locomotion control tasks with extensive flight phases, such as those encountered…”
Získať plný text
Journal Article -
3
Deep Learning Approaches to Grasp Synthesis: A Review
ISSN: 1552-3098, 1941-0468, 1941-0468Vydavateľské údaje: New York IEEE 01.10.2023Vydané v IEEE transactions on robotics (01.10.2023)“…Grasping is the process of picking up an object by applying forces and torques at a set of contacts. Recent advances in deep learning methods have allowed…”
Získať plný text
Journal Article -
4
Physically Feasible Repair of Reactive, Linear Temporal Logic-Based, High-Level Tasks
ISSN: 1552-3098, 1941-0468Vydavateľské údaje: New York IEEE 01.12.2023Vydané v IEEE transactions on robotics (01.12.2023)“…A typical approach to creating complex robot behaviors is to compose atomic controllers, or skills, such that the resulting behavior satisfies a high-level…”
Získať plný text
Journal Article -
5
TidyBot: personalized robot assistance with large language models
ISSN: 0929-5593, 1573-7527Vydavateľské údaje: New York Springer US 01.12.2023Vydané v Autonomous robots (01.12.2023)“…For a robot to personalize physical assistance effectively, it must learn user preferences that can be generally reapplied to future scenarios. In this work,…”
Získať plný text
Journal Article -
6
Federated Imitation Learning: A Novel Framework for Cloud Robotic Systems With Heterogeneous Sensor Data
ISSN: 2377-3766, 2377-3766Vydavateľské údaje: Piscataway IEEE 01.04.2020Vydané v IEEE robotics and automation letters (01.04.2020)“…Humans are capable of learning a new behavior by observing others to perform the skill. Similarly, robots can also implement this by imitation learning…”
Získať plný text
Journal Article -
7
Text2Motion: from natural language instructions to feasible plans
ISSN: 0929-5593, 1573-7527Vydavateľské údaje: New York Springer US 01.12.2023Vydané v Autonomous robots (01.12.2023)“…We propose Text2Motion, a language-based planning framework enabling robots to solve sequential manipulation tasks that require long-horizon reasoning. Given a…”
Získať plný text
Journal Article -
8
Task-Driven Detection of Distribution Shifts With Statistical Guarantees for Robot Learning
ISSN: 1552-3098, 1941-0468Vydavateľské údaje: IEEE 2025Vydané v IEEE transactions on robotics (2025)“…Our goal is to perform out-of-distribution (OOD) detection , i.e., to detect when a robot is operating in environments drawn from a different distribution than…”
Získať plný text
Journal Article -
9
Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot
ISSN: 0929-5593, 1573-7527Vydavateľské údaje: New York Springer US 01.03.2016Vydané v Autonomous robots (01.03.2016)“…This paper describes a collection of optimization algorithms for achieving dynamic planning, control, and state estimation for a bipedal robot designed to…”
Získať plný text
Journal Article -
10
Motion planning and control for mobile robot navigation using machine learning: a survey
ISSN: 0929-5593, 1573-7527Vydavateľské údaje: New York Springer US 01.06.2022Vydané v Autonomous robots (01.06.2022)“…Moving in complex environments is an essential capability of intelligent mobile robots. Decades of research and engineering have been dedicated to developing…”
Získať plný text
Journal Article -
11
DRL-VO: Learning to Navigate Through Crowded Dynamic Scenes Using Velocity Obstacles
ISSN: 1552-3098, 1941-0468Vydavateľské údaje: New York IEEE 01.08.2023Vydané v IEEE transactions on robotics (01.08.2023)“…This article proposes a novel learning-based control policy with strong generalizability to new environments that enables a mobile robot to navigate…”
Získať plný text
Journal Article -
12
Unmanned aerial vehicles (UAVs): practical aspects, applications, open challenges, security issues, and future trends
ISSN: 1861-2776, 1861-2784, 1861-2784Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2023Vydané v Intelligent service robotics (01.03.2023)“…Recently, unmanned aerial vehicles (UAVs) or drones have emerged as a ubiquitous and integral part of our society. They appear in great diversity in a…”
Získať plný text
Journal Article -
13
Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda
ISSN: 1868-5137, 1868-5145Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2023Vydané v Journal of ambient intelligence and humanized computing (01.07.2023)“…Artificial intelligence can assist providers in a variety of patient care and intelligent health systems. Artificial intelligence techniques ranging from…”
Získať plný text
Journal Article -
14
Motion Planning Networks: Bridging the Gap Between Learning-Based and Classical Motion Planners
ISSN: 1552-3098, 1941-0468Vydavateľské údaje: New York IEEE 01.02.2021Vydané v IEEE transactions on robotics (01.02.2021)“…This article describes motion planning networks (MPNet), a computationally efficient, learning-based neural planner for solving motion planning problems.MPNet…”
Získať plný text
Journal Article -
15
What the Constant Velocity Model Can Teach Us About Pedestrian Motion Prediction
ISSN: 2377-3766, 2377-3766Vydavateľské údaje: Piscataway IEEE 01.04.2020Vydané v IEEE robotics and automation letters (01.04.2020)“…Pedestrian motion prediction is a fundamental task for autonomous robots and vehicles to operate safely. In recent years many complex approaches based on…”
Získať plný text
Journal Article -
16
Making Sense of Vision and Touch: Learning Multimodal Representations for Contact-Rich Tasks
ISSN: 1552-3098, 1941-0468Vydavateľské údaje: New York IEEE 01.06.2020Vydané v IEEE transactions on robotics (01.06.2020)“…Contact-rich manipulation tasks in unstructured environments often require both haptic and visual feedback. It is nontrivial to manually design a robot…”
Získať plný text
Journal Article -
17
Long-Horizon Multi-Robot Rearrangement Planning for Construction Assembly
ISSN: 1552-3098, 1941-0468Vydavateľské údaje: New York IEEE 01.02.2023Vydané v IEEE transactions on robotics (01.02.2023)“…Robotic construction assembly planning aims to find feasible assembly sequences as well as the corresponding robot-paths and can be seen as a special case of…”
Získať plný text
Journal Article -
18
The Foreseeable Future: Self-Supervised Learning to Predict Dynamic Scenes for Indoor Navigation
ISSN: 1552-3098, 1941-0468Vydavateľské údaje: New York IEEE 01.12.2023Vydané v IEEE transactions on robotics (01.12.2023)“…We present a method for generating, predicting, and using spatiotemporal occupancy grid maps (SOGM), which embed future semantic information of real dynamic…”
Získať plný text
Journal Article -
19
Flow: A Modular Learning Framework for Mixed Autonomy Traffic
ISSN: 1552-3098, 1941-0468Vydavateľské údaje: New York IEEE 01.04.2022Vydané v IEEE transactions on robotics (01.04.2022)“…The rapid development of autonomous vehicles (AVs) holds vast potential for transportation systems through improved safety, efficiency, and access to mobility…”
Získať plný text
Journal Article -
20
A Multimodal Anomaly Detector for Robot-Assisted Feeding Using an LSTM-Based Variational Autoencoder
ISSN: 2377-3766, 2377-3766Vydavateľské údaje: Piscataway IEEE 01.07.2018Vydané v IEEE robotics and automation letters (01.07.2018)“…The detection of anomalous executions is valuable for reducing potential hazards in assistive manipulation. Multimodal sensory signals can be helpful for…”
Získať plný text
Journal Article