Suchergebnisse - "multi-modal variational autoencoder"
-
1
Dmvae: a dual-stream multi-modal variational autoencoder for multi-task fake news detection
ISSN: 1433-7541, 1433-755XVeröffentlicht: London Springer London 01.06.2025Veröffentlicht in Pattern analysis and applications : PAA (01.06.2025)“… The proliferation of fake news on social media platforms, facilitated by the development of the Internet, has become a pressing social issue, intensifying the …”
Volltext
Journal Article -
2
Anytime 3D Object Reconstruction Using Multi-Modal Variational Autoencoder
ISSN: 2377-3766, 2377-3766Veröffentlicht: Piscataway IEEE 01.04.2022Veröffentlicht in IEEE robotics and automation letters (01.04.2022)“… For effective human-robot teaming, it is important for the robots to be able to share their visual perception with the human operators. In a harsh remote …”
Volltext
Journal Article -
3
Time-Lag Aware Multi-Modal Variational Autoencoder Using Baseball Videos And Tweets For Prediction Of Important Scenes
ISSN: 2381-8549Veröffentlicht: IEEE 01.01.2021Veröffentlicht in Proceedings - International Conference on Image Processing (01.01.2021)“… A novel method based on time-lag aware multi-modal variational autoencoder for prediction of important scenes (TI-MVAE-PIS …”
Volltext
Tagungsbericht -
4
A Markov Random Field Multi-Modal Variational AutoEncoder
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 18.08.2024Veröffentlicht in arXiv.org (18.08.2024)“… Recent advancements in multimodal Variational AutoEncoders (VAEs) have highlighted their potential for modeling complex data from multiple modalities …”
Volltext
Paper -
5
Human Emotion Estimation Using Multi-Modal Variational AutoEncoder with Time Changes
Veröffentlicht: IEEE 09.03.2021Veröffentlicht in 2021 IEEE 3rd Global Conference on Life Sciences and Technologies (LifeTech) (09.03.2021)“… A human emotion estimation method via feature integration using multi-modal variational autoencoder (MVAE …”
Volltext
Tagungsbericht -
6
Anytime 3D Object Reconstruction using Multi-modal Variational Autoencoder
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 24.12.2021Veröffentlicht in arXiv.org (24.12.2021)“… For effective human-robot teaming, it is important for the robots to be able to share their visual perception with the human operators. In a harsh remote …”
Volltext
Paper -
7
A Perceived Environment Design using a Multi-Modal Variational Autoencoder for learning Active-Sensing
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 01.11.2019Veröffentlicht in arXiv.org (01.11.2019)“… This contribution comprises the interplay between a multi-modal variational autoencoder and an environment to a perceived environment, on which an agent can act …”
Volltext
Paper -
8
Combined Generation of Electrocardiogram and Cardiac Anatomy Models Using Multi-Modal Variational Autoencoders
ISSN: 1945-8452Veröffentlicht: IEEE 28.03.2022Veröffentlicht in Proceedings (International Symposium on Biomedical Imaging) (28.03.2022)“… In this work, we propose a novel multi-modal variational autoencoder (VAE) capable of processing combined physiology and bitemporal anatomy information in the form of electrocardiograms (ECG …”
Volltext
Tagungsbericht -
9
Rolling Bearing Fault Diagnosis Based on Multi-Modal Variational Autoencoders
Veröffentlicht: IEEE 30.11.2022Veröffentlicht in 2022 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD) (30.11.2022)“… For this reason, a multi-modal variational autoencoder (MMVAE) is proposed to extract useful features from multiple modalities …”
Volltext
Tagungsbericht -
10
Normative Modeling using Multimodal Variational Autoencoders to Identify Abnormal Brain Volume Deviations in Alzheimer's Disease
ISSN: 0277-786XVeröffentlicht: United States 01.02.2023Veröffentlicht in Proceedings of SPIE, the international society for optical engineering (01.02.2023)“… To address this limitation, we propose a multi-modal variational autoencoder (mmVAE) based normative modelling framework that can capture the joint distribution between different modalities to identify …”
Weitere Angaben
Journal Article -
11
Multi-modal Variational Autoencoders for normative modelling across multiple imaging modalities
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 02.10.2023Veröffentlicht in arXiv.org (02.10.2023)“… One of the challenges of studying common neurological disorders is disease heterogeneity including differences in causes, neuroimaging characteristics, …”
Volltext
Paper -
12
Multi-Modal Domain Adaptation Variational Auto-encoder for EEG-Based Emotion Recognition
ISSN: 2329-9266Veröffentlicht: Research Center for Brain-inspired Intelligence,National Laboratory of Pattern Recognition,Institute of Automation,Chinese Academy of Science,Beijing 100190 01.09.2022Veröffentlicht in 自动化学报(英文版) (01.09.2022)“… data.Our method builds a multi-modal variational autoencoder(MVAE)to project the data of multiple modalities into a common …”
Volltext
Journal Article -
13
Multi-Modal Domain Adaptation Variational Autoencoder for EEG-Based Emotion Recognition
ISSN: 2329-9266, 2329-9274Veröffentlicht: Piscataway Chinese Association of Automation (CAA) 01.09.2022Veröffentlicht in IEEE/CAA journal of automatica sinica (01.09.2022)“… Our method builds a multi-modal variational autoencoder (MVAE) to project the data of multiple modalities into a common space …”
Volltext
Journal Article -
14
Self-Supervised Audio-Visual Feature Learning for Single-modal Incremental Terrain Type Clustering
ISSN: 2169-3536, 2169-3536Veröffentlicht: Piscataway IEEE 01.01.2021Veröffentlicht in IEEE Access (01.01.2021)“… In this paper, we present a novel framework using the multi-modal variational autoencoder and the Gaussian mixture model clustering algorithm on image data and audio data for terrain …”
Volltext
Journal Article -
15
Cross-modal Variational Alignment of Latent Spaces
ISSN: 2160-7516Veröffentlicht: IEEE 01.06.2020Veröffentlicht in IEEE Computer Society Conference on Computer Vision and Pattern Recognition workshops (01.06.2020)“… The first network is a multi modal variational autoencoder that maps directly one modality to the other, while the second one is a single-modal variational autoencoder …”
Volltext
Tagungsbericht -
16
Fake News Detection Using BERT-VGG19 Multimodal Variational Autoencoder
ISSN: 2687-7767Veröffentlicht: IEEE 11.11.2021Veröffentlicht in IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (Online) (11.11.2021)“… In this era of readily accessible Internet, there has been a monumental shift in the way information is created, processed and disseminated to the netizens …”
Volltext
Tagungsbericht -
17
Private-Shared Disentangled Multimodal VAE for Learning of Latent Representations
ISSN: 2160-7516Veröffentlicht: IEEE 01.06.2021Veröffentlicht in IEEE Computer Society Conference on Computer Vision and Pattern Recognition workshops (01.06.2021)“… In this paper, we introduce a disentangled multi-modal variational autoencoder (DMVAE) that utilizes disentangled VAE strategy to separate the private and shared latent spaces of multiple modalities …”
Volltext
Tagungsbericht -
18
Bayesian structural model updating with multimodal variational autoencoder
ISSN: 0045-7825, 1879-2138Veröffentlicht: Elsevier B.V 01.09.2024Veröffentlicht in Computer methods in applied mechanics and engineering (01.09.2024)“… The proposed method utilizes the surrogate unimodal encoders of a multimodal variational autoencoder (VAE …”
Volltext
Journal Article -
19
Multimodal variational autoencoder for inverse problems in geophysics: application to a 1-D magnetotelluric problem
ISSN: 0956-540X, 1365-246XVeröffentlicht: Oxford University Press 01.12.2023Veröffentlicht in Geophysical journal international (01.12.2023)“… However, most geophysical applications exhibit more than one plausible solution. Here, we propose a multimodal variational autoencoder model that employs a mixture …”
Volltext
Journal Article -
20
Geometry-informed multimodal variational autoencoder for real-time prediction of properties for Ti–6Al–4V fabricated using PBF-LB
ISSN: 0956-5515, 1572-8145Veröffentlicht: 11.10.2025Veröffentlicht in Journal of intelligent manufacturing (11.10.2025)“… A geometry-informed multimodal variational autoencoder linear hybrid model (GMVAE) was developed to use in situ processing signals along with geometry information from laser scanning patterns to predict the mechanical properties of Ti-6Al-4 …”
Volltext
Journal Article