Suchergebnisse - "memory autoencoder"

  • Treffer 1 - 4 von 4
Treffer weiter einschränken
  1. 1

    STMemAE: An Instance-Level Based Spatio-Temporal Memory Autoencoder for Unsupervised Vision-Based Seizure Detection von Hu, Dinghan, Wu, Kai, Fang, Yuan, Jiang, Tiejia, Gao, Feng, Cao, Jiuwen

    ISSN: 2471-285X, 2471-285X
    Veröffentlicht: Piscataway IEEE 01.10.2025
    “… With these regards, an effective instance-level based spatio-temporal memory autoencoder, called STMemAE, is proposed for unsupervised vision-based seizure detection in this paper …”
    Volltext
    Journal Article
  2. 2

    A Long Short-Term Memory Autoencoder Approach for EEG Motor Imagery Classification von Elessawy, Raghda H., Eldawlatly, Seif, Abbas, Hazem M.

    Veröffentlicht: IEEE 01.01.2020
    “… Motor imagery represents one Brain-Computer Interface (BCI) paradigm that has been utilized in developing applications to assist subjects with motor disability …”
    Volltext
    Tagungsbericht
  3. 3

    Deep neurocomputational fusion for ASD diagnosis using multi-domain EEG analysis von Rasool, Abdur, Aslam, Saba, Xu, Yongjie, Wang, Yishan, Pan, Yi, Chen, Weiyang

    ISSN: 0925-2312
    Veröffentlicht: Elsevier B.V 07.08.2025
    Veröffentlicht in Neurocomputing (Amsterdam) (07.08.2025)
    “… Autism spectrum disorder (ASD) presents significant challenges in early detection due to its heterogeneous nature and the subtlety of neurophysiological …”
    Volltext
    Journal Article
  4. 4

    Multimodal Pain Recognition in Postoperative Patients: Machine Learning Approach von Subramanian, Ajan, Cao, Rui, Naeini, Emad Kasaeyan, Aqajari, Seyed Amir Hossein, Hughes, Thomas D, Calderon, Michael-David, Zheng, Kai, Dutt, Nikil, Liljeberg, Pasi, Salanterä, Sanna, Nelson, Ariana M, Rahmani, Amir M

    ISSN: 2561-326X, 2561-326X
    Veröffentlicht: Canada JMIR Publications 27.01.2025
    Veröffentlicht in JMIR formative research (27.01.2025)
    “… However, most previous work has focused on healthy subjects in controlled environments, with limited attention to real-world postoperative pain scenarios …”
    Volltext
    Journal Article