Suchergebnisse - "density-based spatial clustering of applications with noise"

  1. 1

    Constrained Density-Based Spatial Clustering of Applications with Noise (DBSCAN) using hyperparameter optimization von Kim, Jongwon, Lee, Hyeseon, Ko, Young Myoung

    ISSN: 0950-7051
    Veröffentlicht: Elsevier B.V 04.11.2024
    Veröffentlicht in Knowledge-based systems (04.11.2024)
    “… This article proposes a hyperparameter optimization method for density-based spatial clustering of applications with noise (DBSCAN …”
    Volltext
    Journal Article
  2. 2

    New perspective on density-based spatial clustering of applications with noise for groundwater assessment von Jibrin, Abdulhayat M., Al-Suwaiyan, Mohammad, Yaseen, Zaher Mundher, Abba, Sani I.

    ISSN: 0022-1694
    Veröffentlicht: Elsevier B.V 01.11.2025
    Veröffentlicht in Journal of hydrology (Amsterdam) (01.11.2025)
    “… ) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) for the assessment of groundwater quality in arid environments …”
    Volltext
    Journal Article
  3. 3

    A maritime traffic route extraction method based on density-based spatial clustering of applications with noise for multi-dimensional data von Huang, Changhai, Qi, Xucun, Zheng, Jian, Zhu, Ranchao, Shen, Jia

    ISSN: 0029-8018, 1873-5258
    Veröffentlicht: Elsevier Ltd 15.01.2023
    Veröffentlicht in Ocean engineering (15.01.2023)
    “… ) data and the multi-dimensional density-based spatial clustering of applications with noise (MD-DBSCAN) data …”
    Volltext
    Journal Article
  4. 4

    Fault Diagnosis in Gas Insulated Switchgear Based on Genetic Algorithm and Density- Based Spatial Clustering of Applications With Noise von Yang, Yuan, Suliang, Ma, Jianwen, Wu, Bowen, Jia, Weixin, Li, Xiaowu, Luo

    ISSN: 1530-437X, 1558-1748
    Veröffentlicht: New York IEEE 15.01.2021
    Veröffentlicht in IEEE sensors journal (15.01.2021)
    “… ) consisting of a feature selection method based on genetic algorithm (GA) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN …”
    Volltext
    Journal Article
  5. 5

    Warship formation extraction and recognition based on densitybased spatial clustering of applications with noise and improved convolutional neural network von He, Haotian, Wu, Ling, Hu, Xianjun

    ISSN: 1751-8784, 1751-8792
    Veröffentlicht: Wiley 01.12.2022
    Veröffentlicht in IET radar, sonar & navigation (01.12.2022)
    “… ‐based spatial clustering of applications with noise (DBSCAN) method based on Gaussian kernel to extract formation targets …”
    Volltext
    Journal Article
  6. 6

    Kernel Density Based Spatial Clustering of Applications with Noise von Kalpavruksha, Rohan, Kalpavruksha, Roshan, Cha, Teryn, Cha, Sung-Hyuk

    ISSN: 2334-0754, 2334-0762
    Veröffentlicht: LibraryPress@UF 14.05.2025
    “… Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a widely used clustering algorithm renowned for its ability to identify clusters of arbitrary shapes and detect noise …”
    Volltext
    Journal Article
  7. 7

    A new approach data processing: density-based spatial clustering of applications with noise (DBSCAN) clustering using game-theory: A new approach data processing: density-based spatial clustering of applications with von Kazemi, Uranus, Soleimani, Seyfollah

    ISSN: 1432-7643, 1433-7479
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2025
    Veröffentlicht in Soft computing (Berlin, Germany) (01.02.2025)
    “… Due to the unpredictable growth of data in various fields, rapid clustering of big data is seriously needed in order to identify the hidden structure of data …”
    Volltext
    Journal Article
  8. 8

    A new approach data processing: density-based spatial clustering of applications with noise (DBSCAN) clustering using game-theory von Kazemi, Uranus, Soleimani, Seyfollah

    ISSN: 1432-7643, 1433-7479
    Veröffentlicht: Heidelberg Springer Nature B.V 01.02.2025
    Veröffentlicht in Soft computing (Berlin, Germany) (01.02.2025)
    “… Due to the unpredictable growth of data in various fields, rapid clustering of big data is seriously needed in order to identify the hidden structure of data …”
    Volltext
    Journal Article
  9. 9

    Segmentation of coronary arteries from X-ray angiographic images using density based spatial clustering of applications with noise (DBSCAN) von Mardani, Kamran, Maghooli, Keivan, Farokhi, Fardad

    ISSN: 1746-8094
    Veröffentlicht: Elsevier Ltd 01.03.2025
    Veröffentlicht in Biomedical signal processing and control (01.03.2025)
    “… This study introduces a new method for segmenting coronary arteries in X-ray angiographic images using the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm …”
    Volltext
    Journal Article
  10. 10

    A segmentation method for lung nodule image sequences based on superpixels and density-based spatial clustering of applications with noise von Zhang, Wei, Zhang, Xiaolong, Zhao, Juanjuan, Qiang, Yan, Tian, Qi, Tang, Xiaoxian

    ISSN: 1932-6203, 1932-6203
    Veröffentlicht: United States Public Library of Science 07.09.2017
    Veröffentlicht in PloS one (07.09.2017)
    “… To solve these problems, we propose a new method for the segmentation of lung nodule image sequences based on superpixels and density-based spatial clustering of applications with noise (DBSCAN …”
    Volltext
    Journal Article
  11. 11

    SS-DBSCAN: Semi-Supervised Density-Based Spatial Clustering of Applications With Noise for Meaningful Clustering in Diverse Density Data von Zaki Abdulhameed, Tiba, Yousif, Suhad A., Samawi, Venus W., Imad Al-Shaikhli, Hasnaa

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: IEEE 2024
    Veröffentlicht in IEEE access (2024)
    “… DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is an unsupervised clustering algorithm designed to identify clusters of various shapes and sizes in noisy datasets by pinpointing core points …”
    Volltext
    Journal Article
  12. 12

    Adaptive Density-Based Spatial Clustering of Applications with Noise (ADBSCAN) for Clusters of Different Densities von Fahim, Ahmed

    ISSN: 1546-2226, 1546-2218, 1546-2226
    Veröffentlicht: Henderson Tech Science Press 2023
    Veröffentlicht in Computers, materials & continua (2023)
    “… These methods can discover clusters of various shapes and sizes. The most studied algorithm in this class is the Density-Based Spatial Clustering of Applications with Noise (DBSCAN …”
    Volltext
    Journal Article
  13. 13

    Semi-Automatic Detection of Ground Displacement from Multi-Temporal Sentinel-1 Synthetic Aperture Radar Interferometry Analysis and Density-Based Spatial Clustering of Applications with Noise in Xining City, China von Chen, Dianqiang, Wu, Qichen, Sun, Zhongjin, Shi, Xuguo, Zhang, Shaocheng, Zhang, Yi, Wu, Yunlong

    ISSN: 2072-4292, 2072-4292
    Veröffentlicht: Basel MDPI AG 01.08.2024
    Veröffentlicht in Remote sensing (Basel, Switzerland) (01.08.2024)
    “… The China Loess Plateau (CLP) is the world’s most extensive and thickest region of loess deposits. The inherently loose structure of loess makes the CLP …”
    Volltext
    Journal Article
  14. 14

    Density-Based Spatial Clustering of Applications With Noise (DBSCAN) for Probe Card Production for Advanced Quality Control of Wafer Probing Test von Chien, Chen-Fu, Suwattananuruk, Butsayarin

    ISSN: 0894-6507, 1558-2345
    Veröffentlicht: New York IEEE 01.11.2024
    Veröffentlicht in IEEE transactions on semiconductor manufacturing (01.11.2024)
    “… Wafer probing test is crucial for selecting the known good dies via the probe card as the testing signal interface between the tester and the integrated …”
    Volltext
    Journal Article
  15. 15

    Density based spatial clustering of applications with noise and fuzzy C-means algorithms for unsupervised mineral prospectivity mapping von Ghezelbash, Reza, Daviran, Mehrdad, Maghsoudi, Abbas, Hajihosseinlou, Mahsa

    ISSN: 1865-0473, 1865-0481
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2025
    Veröffentlicht in Earth science informatics (01.02.2025)
    “… Our research focuses on examining two clustering methods, namely Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and fuzzy c-means (FCM …”
    Volltext
    Journal Article
  16. 16

    Air Conditioning Load Forecasting for Geographical Grids Using Deep Reinforcement Learning and Density-Based Spatial Clustering of Applications with Noise and Graph Attention Networks von Long, Chuan, Yang, Xinting, Su, Yunche, Liu, Fang, Ma, Ruiguang, Ma, Tiannan, Wu, Yangjin, Shen, Xiaodong

    ISSN: 1996-1073, 1996-1073
    Veröffentlicht: Basel MDPI AG 01.06.2025
    Veröffentlicht in Energies (Basel) (01.06.2025)
    “… Air conditioning loads in power systems exhibit spatiotemporal heterogeneity across geographical regions, complicating accurate load forecasting. This study …”
    Volltext
    Journal Article
  17. 17

    Detecting plumes in mobile air quality monitoring time series with density-based spatial clustering of applications with noise von Actkinson, Blake, Griffin, Robert J.

    ISSN: 1867-8548, 1867-1381, 1867-8548
    Veröffentlicht: Katlenburg-Lindau Copernicus GmbH 25.07.2023
    Veröffentlicht in Atmospheric measurement techniques (25.07.2023)
    “… The new method relies on density-based spatial clustering of applications with noise (DBSCAN), an unsupervised machine learning technique …”
    Volltext
    Journal Article
  18. 18
  19. 19

    Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and Principal Component Analysis (PCA) for Particulate Matter (PM) Anomaly Detection von Hanna Arini Parhusip, Suryasatriya Trihandaru, Bambang Susanto, Johanes Dian Kurniawan, Adrianus Herry Heriadi, Petrus Priyo Santosa, Yohanes Sardjono

    ISSN: 2088-1541, 2541-5832
    Veröffentlicht: 12.10.2025
    Veröffentlicht in Lontar komputer (12.10.2025)
    “… ). Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is used to detect anomalies during the observation period …”
    Volltext
    Journal Article
  20. 20

    Novel strategy for applying hierarchical density-based spatial clustering of applications with noise towards spectroscopic analysis and detection of melanocytic lesions von Ye, Jason Yuan, Yu, Christopher, Husman, Tiffany, Chen, Bryan, Trikala, Aryaman

    ISSN: 1473-5636, 1473-5636
    Veröffentlicht: England 01.12.2021
    Veröffentlicht in Melanoma research (01.12.2021)
    “… proliferative growth as a malignant lesion. This study explores the applications of hierarchical density-based spatial clustering of applications with noise (HDBSCAN …”
    Weitere Angaben
    Journal Article