Suchergebnisse - "data-driven algorithm design"
-
1
Dispersion for Data-Driven Algorithm Design, Online Learning, and Private Optimization
ISSN: 2575-8454Veröffentlicht: IEEE 01.10.2018Veröffentlicht in 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS) (01.10.2018)“… A crucial problem in modern data science is data-driven algorithm design, where the goal is to choose the best algorithm, or algorithm parameters, for a specific application domain …”
Volltext
Tagungsbericht -
2
Data-driven Algorithm Design
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 14.11.2020Veröffentlicht in arXiv.org (14.11.2020)“… Data driven algorithm design is an important aspect of modern data science and algorithm design …”
Volltext
Paper -
3
Learn to optimize—a brief overview
ISSN: 2095-5138, 2053-714X, 2053-714XVeröffentlicht: China Oxford University Press 01.08.2024Veröffentlicht in National science review (01.08.2024)“… Most optimization problems of practical significance are typically solved by highly configurable parameterized algorithms. To achieve the best performance on a …”
Volltext
Journal Article -
4
Accelerating ERM for data-driven algorithm design using output-sensitive techniques
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 23.10.2024Veröffentlicht in arXiv.org (23.10.2024)“… Data-driven algorithm design is a promising, learning-based approach for beyond worst-case analysis of algorithms with tunable parameters …”
Volltext
Paper -
5
How much data is sufficient to learn high-performing algorithms? Generalization guarantees for data-driven algorithm design
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 25.04.2021Veröffentlicht in arXiv.org (25.04.2021)“… Worst-case instances, however, may be rare or nonexistent in practice. A growing body of research has demonstrated that data-driven algorithm design can lead to significant improvements in performance …”
Volltext
Paper -
6
Dispersion for Data-Driven Algorithm Design, Online Learning, and Private Optimization
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 22.10.2018Veröffentlicht in arXiv.org (22.10.2018)“… Data-driven algorithm design, that is, choosing the best algorithm for a specific application, is a crucial problem in modern data science …”
Volltext
Paper -
7
Adaptivity, Structure, and Objectives in Sequential Decision-Making
ISBN: 9798379711702Veröffentlicht: ProQuest Dissertations & Theses 01.01.2023“… Sequential decision-making algorithms are ubiquitous in the design and optimization of large-scale systems due to their practical impact, leading to a …”
Volltext
Dissertation -
8
Algorithm Configuration for Structured Pfaffian Settings
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 12.11.2024Veröffentlicht in arXiv.org (12.11.2024)“… Data-driven algorithm design automatically adapts algorithms to specific application domains, achieving better performance …”
Volltext
Paper -
9
Learning-Based Search Algorithm Design
ISBN: 9798265404169Veröffentlicht: ProQuest Dissertations & Theses 01.01.2023“… Classical search algorithms, such as A* search, evolutionary search, and Monte Carlo tree search, play a central role in solving many combinatorial …”
Volltext
Dissertation -
10
Contributions to Data-Driven Combinatorial Solvers
ISBN: 9798379763022Veröffentlicht: ProQuest Dissertations & Theses 01.01.2023“… Data-driven algorithm design provides a potential solution to this dilemma by tuning various aspects of the solver via machine learning to the desired distribution of a particular domain …”
Volltext
Dissertation -
11
Sample Complexity of Algorithm Selection Using Neural Networks and Its Applications to Branch-and-Cut
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 04.06.2024Veröffentlicht in arXiv.org (04.06.2024)“… Data-driven algorithm design is a paradigm that uses statistical and machine learning techniques to select from a class of algorithms for a computational problem an algorithm that has the …”
Volltext
Paper -
12
Semi-bandit Optimization in the Dispersed Setting
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 21.12.2020Veröffentlicht in arXiv.org (21.12.2020)“… The goal of data-driven algorithm design is to obtain high-performing algorithms for specific application domains using machine learning and data …”
Volltext
Paper -
13
New Guarantees for Learning Revenue Maximizing Menus of Lotteries and Two-Part Tariffs
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 15.07.2024Veröffentlicht in arXiv.org (15.07.2024)“… We advance a recently flourishing line of work at the intersection of learning theory and computational economics by studying the learnability of two classes …”
Volltext
Paper -
14
Generalization Bound and Learning Methods for Data-Driven Projections in Linear Programming
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 21.05.2024Veröffentlicht in arXiv.org (21.05.2024)“… How to solve high-dimensional linear programs (LPs) efficiently is a fundamental question. Recently, there has been a surge of interest in reducing LP sizes …”
Volltext
Paper -
15
Sample Complexity of Learning Heuristic Functions for Greedy-Best-First and A Search
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 24.05.2022Veröffentlicht in arXiv.org (24.05.2022)“… and A*. We build on a recent framework called \textit{data-driven algorithm design} and evaluate the \textit{pseudo-dimension} of a class of utility functions that measure the performance of parameterized algorithms …”
Volltext
Paper -
16
Learning-to-learn non-convex piecewise-Lipschitz functions
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 19.08.2021Veröffentlicht in arXiv.org (19.08.2021)“… We analyze the meta-learning of the initialization and step-size of learning algorithms for piecewise-Lipschitz functions, a non-convex setting with …”
Volltext
Paper -
17
A General Large Neighborhood Search Framework for Solving Integer Linear Programs
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 17.06.2020Veröffentlicht in arXiv.org (17.06.2020)“… This paper studies a strategy for data-driven algorithm design for large-scale combinatorial optimization problems that can leverage existing state-of-the-art solvers in general purpose ways …”
Volltext
Paper

