Suchergebnisse - "data-driven algorithm design"

  • Treffer 1 - 17 von 17
Treffer weiter einschränken
  1. 1

    Dispersion for Data-Driven Algorithm Design, Online Learning, and Private Optimization von Balcan, Maria-Florina, Dick, Travis, Vitercik, Ellen

    ISSN: 2575-8454
    Veröffentlicht: IEEE 01.10.2018
    “… A crucial problem in modern data science is data-driven algorithm design, where the goal is to choose the best algorithm, or algorithm parameters, for a specific application domain …”
    Volltext
    Tagungsbericht
  2. 2

    Data-driven Algorithm Design von Maria-Florina Balcan

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 14.11.2020
    Veröffentlicht in arXiv.org (14.11.2020)
    “… Data driven algorithm design is an important aspect of modern data science and algorithm design …”
    Volltext
    Paper
  3. 3

    Learn to optimize—a brief overview von Tang, Ke, Yao, Xin

    ISSN: 2095-5138, 2053-714X, 2053-714X
    Veröffentlicht: China Oxford University Press 01.08.2024
    Veröffentlicht in National science review (01.08.2024)
    “… Most optimization problems of practical significance are typically solved by highly configurable parameterized algorithms. To achieve the best performance on a …”
    Volltext
    Journal Article
  4. 4

    Accelerating ERM for data-driven algorithm design using output-sensitive techniques von Maria-Florina Balcan, Seiler, Christopher, Sharma, Dravyansh

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 23.10.2024
    Veröffentlicht in arXiv.org (23.10.2024)
    “… Data-driven algorithm design is a promising, learning-based approach for beyond worst-case analysis of algorithms with tunable parameters …”
    Volltext
    Paper
  5. 5

    How much data is sufficient to learn high-performing algorithms? Generalization guarantees for data-driven algorithm design von Maria-Florina Balcan, DeBlasio, Dan, Dick, Travis, Kingsford, Carl, Sandholm, Tuomas, Vitercik, Ellen

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 25.04.2021
    Veröffentlicht in arXiv.org (25.04.2021)
    “… Worst-case instances, however, may be rare or nonexistent in practice. A growing body of research has demonstrated that data-driven algorithm design can lead to significant improvements in performance …”
    Volltext
    Paper
  6. 6

    Dispersion for Data-Driven Algorithm Design, Online Learning, and Private Optimization von Maria-Florina Balcan, Dick, Travis, Vitercik, Ellen

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 22.10.2018
    Veröffentlicht in arXiv.org (22.10.2018)
    “… Data-driven algorithm design, that is, choosing the best algorithm for a specific application, is a crucial problem in modern data science …”
    Volltext
    Paper
  7. 7

    Adaptivity, Structure, and Objectives in Sequential Decision-Making von Sinclair, Sean R

    ISBN: 9798379711702
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2023
    “… Sequential decision-making algorithms are ubiquitous in the design and optimization of large-scale systems due to their practical impact, leading to a …”
    Volltext
    Dissertation
  8. 8

    Algorithm Configuration for Structured Pfaffian Settings von Maria-Florina Balcan, Anh Tuan Nguyen, Sharma, Dravyansh

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 12.11.2024
    Veröffentlicht in arXiv.org (12.11.2024)
    “… Data-driven algorithm design automatically adapts algorithms to specific application domains, achieving better performance …”
    Volltext
    Paper
  9. 9

    Learning-Based Search Algorithm Design von Chen, Binghong

    ISBN: 9798265404169
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2023
    “… Classical search algorithms, such as A* search, evolutionary search, and Monte Carlo tree search, play a central role in solving many combinatorial …”
    Volltext
    Dissertation
  10. 10

    Contributions to Data-Driven Combinatorial Solvers von Vaezipoor, Pashootan

    ISBN: 9798379763022
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2023
    “… Data-driven algorithm design provides a potential solution to this dilemma by tuning various aspects of the solver via machine learning to the desired distribution of a particular domain …”
    Volltext
    Dissertation
  11. 11

    Sample Complexity of Algorithm Selection Using Neural Networks and Its Applications to Branch-and-Cut von Cheng, Hongyu, Khalife, Sammy, Fiedorowicz, Barbara, Basu, Amitabh

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 04.06.2024
    Veröffentlicht in arXiv.org (04.06.2024)
    “… Data-driven algorithm design is a paradigm that uses statistical and machine learning techniques to select from a class of algorithms for a computational problem an algorithm that has the …”
    Volltext
    Paper
  12. 12

    Semi-bandit Optimization in the Dispersed Setting von Maria-Florina Balcan, Dick, Travis, Pegden, Wesley

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 21.12.2020
    Veröffentlicht in arXiv.org (21.12.2020)
    “… The goal of data-driven algorithm design is to obtain high-performing algorithms for specific application domains using machine learning and data …”
    Volltext
    Paper
  13. 13

    New Guarantees for Learning Revenue Maximizing Menus of Lotteries and Two-Part Tariffs von Maria-Florina Balcan, Beyhaghi, Hedyeh

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 15.07.2024
    Veröffentlicht in arXiv.org (15.07.2024)
    “… We advance a recently flourishing line of work at the intersection of learning theory and computational economics by studying the learnability of two classes …”
    Volltext
    Paper
  14. 14

    Generalization Bound and Learning Methods for Data-Driven Projections in Linear Programming von Sakaue, Shinsaku, Oki, Taihei

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 21.05.2024
    Veröffentlicht in arXiv.org (21.05.2024)
    “… How to solve high-dimensional linear programs (LPs) efficiently is a fundamental question. Recently, there has been a surge of interest in reducing LP sizes …”
    Volltext
    Paper
  15. 15

    Sample Complexity of Learning Heuristic Functions for Greedy-Best-First and A Search von Sakaue, Shinsaku, Oki, Taihei

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 24.05.2022
    Veröffentlicht in arXiv.org (24.05.2022)
    “… and A*. We build on a recent framework called \textit{data-driven algorithm design} and evaluate the \textit{pseudo-dimension} of a class of utility functions that measure the performance of parameterized algorithms …”
    Volltext
    Paper
  16. 16

    Learning-to-learn non-convex piecewise-Lipschitz functions von Maria-Florina Balcan, Khodak, Mikhail, Sharma, Dravyansh, Talwalkar, Ameet

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 19.08.2021
    Veröffentlicht in arXiv.org (19.08.2021)
    “… We analyze the meta-learning of the initialization and step-size of learning algorithms for piecewise-Lipschitz functions, a non-convex setting with …”
    Volltext
    Paper
  17. 17

    A General Large Neighborhood Search Framework for Solving Integer Linear Programs von Song, Jialin, Lanka, Ravi, Yue, Yisong, Dilkina, Bistra

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 17.06.2020
    Veröffentlicht in arXiv.org (17.06.2020)
    “… This paper studies a strategy for data-driven algorithm design for large-scale combinatorial optimization problems that can leverage existing state-of-the-art solvers in general purpose ways …”
    Volltext
    Paper