Výsledky vyhľadávania - "convolutional variational autoencoders"

Alternativne vyhľadávanie:

  • Zobrazené výsledky 1 - 13 z 13
Upresniť hľadanie
  1. 1

    Subject Representation Learning from EEG using Graph Convolutional Variational Autoencoders Autor Mishra, Aditya, Samin, Ahnaf Mozib, Etemad, Ali, Hashemi, Javad

    ISSN: 2379-190X
    Vydavateľské údaje: IEEE 06.04.2025
    “…We propose GC-VASE, a graph convolutional-based variational autoencoder that leverages contrastive learning for subject representation learning from EEG data…”
    Získať plný text
    Konferenčný príspevok..
  2. 2

    Convolutional Variational Autoencoders for Image Clustering Autor Nellas, Ioannis A., Tasoulis, Sotiris K., Plagianakos, Vassilis P.

    ISSN: 2375-9259
    Vydavateľské údaje: IEEE 01.12.2021
    “… However, the effect of the consideration of local structure during feature extraction from a Variational Autoencoder on clustering, is still an unstudied subject in the literature…”
    Získať plný text
    Konferenčný príspevok..
  3. 3

    Interpreting the latent space of a Convolutional Variational Autoencoder for semi-automated eye blink artefact detection in EEG signals Autor Criscuolo, Sabatina, Apicella, Andrea, Prevete, Roberto, Longo, Luca

    ISSN: 0920-5489
    Vydavateľské údaje: Elsevier B.V 01.03.2025
    Vydané v Computer standards and interfaces (01.03.2025)
    “…Electroencephalography (EEG) allows the investigation of brain activity. However, neural signals often contain artefacts, hindering signal analysis. For…”
    Získať plný text
    Journal Article
  4. 4

    A multimodal deep fusion graph framework to detect social distancing violations and FCGs in pandemic surveillance Autor Varghese, Elizabeth B., Thampi, Sabu M.

    ISSN: 0952-1976, 1873-6769
    Vydavateľské údaje: Elsevier Ltd 01.08.2021
    “… when there are illumination variation and occlusion among subjects by solely relying on video data from distributed cameras…”
    Získať plný text
    Journal Article
  5. 5

    Few-Shot User-Adaptable Radar-Based Breath Signal Sensing Autor Mauro, Gianfranco, De Carlos Diez, Maria, Ott, Julius, Servadei, Lorenzo, Cuellar, Manuel P., Morales-Santos, Diego P.

    ISSN: 1424-8220, 1424-8220
    Vydavateľské údaje: Switzerland MDPI AG 10.01.2023
    Vydané v Sensors (Basel, Switzerland) (10.01.2023)
    “… Episodically, a convolutional variational autoencoder learns how to map the processed radar data to a reference signal, generating a constrained latent space…”
    Získať plný text
    Journal Article
  6. 6

    Deep Learning Approach for Epileptic Focus Localization Autor Daoud, Hisham, Bayoumi, Magdy

    ISSN: 1932-4545, 1940-9990, 1940-9990
    Vydavateľské údaje: United States IEEE 01.04.2020
    “… The clinicians highly depend on the intracranial EEG data to make a surgical decision related to epileptic subjects suffering from uncontrollable seizures…”
    Získať plný text
    Journal Article
  7. 7

    A Semi-Supervised Approach For Identifying Abnormal Heart Sounds Using Variational Autoencoder Autor Banerjee, Rohan, Ghose, Avik

    ISSN: 2379-190X
    Vydavateľské údaje: IEEE 01.05.2020
    “… In this paper, we propose a semi-supervised approach to solve the problem. A convolutional Variational Autoencoder (VAE…”
    Získať plný text
    Konferenčný príspevok..
  8. 8

    Variational Autoencoders for Generating Synthetic Tractography-Based Bundle Templates in a Low-Data Setting Autor Feng, Yixue, Chandio, Bramsh Q, Thomopoulos, Sophia I, Chattopadhyay, Tamoghna, Thompson, Paul M

    ISSN: 2692-8205, 2692-8205
    Vydavateľské údaje: United States Cold Spring Harbor Laboratory Press 09.05.2023
    Vydané v bioRxiv (09.05.2023)
    “… In this study, we extended our prior work on using a deep generative model a Convolutional Variational Autoencoder - to map complex and data-intensive streamlines to a low-dimensional latent space…”
    Získať plný text
    Journal Article Paper
  9. 9

    Variational Autoencoders for Generating Synthetic Tractography-Based Bundle Templates in a Low-Data Setting Autor Feng, Yixue, Chandio, Bramsh Q., Thomopoulos, Sophia I., Chattopadhyay, Tamoghna, Thompson, Paul M.

    ISSN: 2694-0604, 2694-0604
    Vydavateľské údaje: United States IEEE 01.01.2023
    “… In this study, we extended our prior work on using a deep generative model - a Convolutional Variational Autoencoder - to map complex and data-intensive streamlines to a low-dimensional latent space…”
    Získať plný text
    Konferenčný príspevok.. Journal Article
  10. 10

    Towards Unsupervised Subject-Independent Speech-Based Relapse Detection in Patients with Psychosis using Variational Autoencoders Autor Garoufis, C., Zlatintsi, A., Filntisis, P. P., Efthymiou, N., Kalisperakis, E., Karantinos, T., Garyfalli, V., Lazaridi, M., Smyrnis, N., Maragos, P.

    ISSN: 2076-1465
    Vydavateľské údaje: EUSIPCO 29.08.2022
    “… Motivated by this, in this work we propose a Convolutional Variational Autoencoder (CVAE), in order to detect and predict the appearance of relapses in patients with psychotic disorders, such as schizophrenia and bipolar disorder…”
    Získať plný text
    Konferenčný príspevok..
  11. 11

    Evaluation of pseudo-healthy image reconstruction for anomaly detection with deep generative models: Application to brain FDG PET Autor Hassanaly, Ravi, Brianceau, Camille, Solal, Maëlys, Colliot, Olivier, Burgos, Ninon

    ISSN: 2331-8422
    Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 29.01.2024
    Vydané v arXiv.org (29.01.2024)
    “… By training a deep generative model with only images from healthy subjects, the model will learn to reconstruct pseudo-healthy images…”
    Získať plný text
    Paper
  12. 12

    Machine Learning for Human Activity Recognition Using Non-Intrusive Sensors Autor Karayaneva, Yordanka Lazarova

    Vydavateľské údaje: ProQuest Dissertations & Theses 01.01.2022
    “… The current studies lack a holistic evaluation of data derived from infrared (IR) sensors including multiple layouts, sensors positions, noise analysis, multi-subject activities, and model generalisation…”
    Získať plný text
    Dissertation
  13. 13

    Learning Optimal White Matter Tract Representations from Tractography using a Deep Generative Model for Population Analyses Autor Feng, Yixue, Bramsh Qamar Chandio, Chattopadhyay, Tamoghna, Thomopoulos, Sophia I, Owens-Walton, Conor, Jahanshad, Neda, Garyfallidis, Eleftherios, Thompson, Paul M

    ISSN: 2692-8205, 2692-8205
    Vydavateľské údaje: Cold Spring Harbor Cold Spring Harbor Laboratory Press 02.08.2022
    Vydané v bioRxiv (02.08.2022)
    “…-scale population studies. We propose a robust dimensionality reduction framework for tractography, using a Convolutional Variational Autoencoder (ConvVAE…”
    Získať plný text
    Paper