Výsledky vyhľadávania - "convolutional variational autoencoders"

Alternativne vyhľadávanie:

  1. 1

    Evolving Deep Convolutional Variational Autoencoders for Image Classification Autor Chen, Xiangru, Sun, Yanan, Zhang, Mengjie, Peng, Dezhong

    ISSN: 1089-778X, 1941-0026
    Vydavateľské údaje: New York IEEE 01.10.2021
    “…Variational autoencoders (VAEs) have demonstrated their superiority in unsupervised learning for image processing in recent years. The performance of the VAEs…”
    Získať plný text
    Journal Article
  2. 2

    Robust Spectral Anomaly Detection in EELS Spectral Images via 3D Convolutional Variational Autoencoders Autor Sultanov, Seyfal, Ayyubi, R. A. W., Buban, James P., Klie, Robert F.

    ISSN: 1613-6810, 1613-6829, 1613-6829
    Vydavateľské údaje: Germany Wiley Subscription Services, Inc 01.08.2025
    “…A 3D Convolutional Variational Autoencoder (3D‐CVAE) is introduced for automated anomaly detection in electron energy…”
    Získať plný text
    Journal Article
  3. 3

    Investigation of convolutional variational autoencoders for facies calibration within ensemble-smoother multiple data assimilation Autor Abbate, Emanuela, Dovera, Laura, Di Curzio, Davide, Da Pra, Andrea

    ISSN: 1420-0597, 1573-1499
    Vydavateľské údaje: Cham Springer International Publishing 01.10.2025
    Vydané v Computational geosciences (01.10.2025)
    “… In this work, we treat 3D synthetic reservoir images with channelized facies adopting a Convolutional Variational AutoEncoder (CVAE…”
    Získať plný text
    Journal Article
  4. 4

    Subject Representation Learning from EEG using Graph Convolutional Variational Autoencoders Autor Mishra, Aditya, Samin, Ahnaf Mozib, Etemad, Ali, Hashemi, Javad

    ISSN: 2379-190X
    Vydavateľské údaje: IEEE 06.04.2025
    “…We propose GC-VASE, a graph convolutional-based variational autoencoder that leverages contrastive learning for subject representation learning from EEG data…”
    Získať plný text
    Konferenčný príspevok..
  5. 5

    Examining the Size of the Latent Space of Convolutional Variational Autoencoders Trained With Spectral Topographic Maps of EEG Frequency Bands Autor Ahmed, Taufique, Longo, Luca

    ISSN: 2169-3536, 2169-3536
    Vydavateľské údaje: Piscataway The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
    Vydané v IEEE access (2022)
    “…Dimensionality reduction and the automatic learning of key features from electroencephalographic (EEG) signals have always been challenging tasks. Variational…”
    Získať plný text
    Journal Article
  6. 6

    Real-time unsupervised monitoring of earth pressure balance shield-induced sinkholes in mixed-face ground conditions via convolutional variational autoencoders Autor Loy-Benitez, Jorge, Lee, Hyun-Koo, Song, Myung Kyu, Lee, Je-Kyum, Lee, Sean Seungwon

    ISSN: 0886-7798
    Vydavateľské údaje: Elsevier Ltd 01.10.2024
    “…•VAE-CNN architecture manages TBM data dynamics for sinkhole event monitoring.•Offline modeling trains the proposed method with sinkhole absence data.•Online…”
    Získať plný text
    Journal Article
  7. 7

    Convolutional Variational Autoencoders and Resampling Techniques with Generative Adversarial Network for Enhancing Internet of Thing Security Autor Dong, Huiyao, Kotenko, I. V.

    ISSN: 1054-6618, 1555-6212
    Vydavateľské údaje: Moscow Pleiades Publishing 01.09.2024
    “… This paper ultilizes convolutional variational autoencoders and resampling techniques for network attacks detection…”
    Získať plný text
    Journal Article
  8. 8

    LHC hadronic jet generation using convolutional variational autoencoders with normalizing flows Autor Orzari, Breno, Chernyavskaya, Nadezda, Cobe, Raphael, Duarte, Javier, Fialho, Jefferson, Gunopulos, Dimitrios, Kansal, Raghav, Pierini, Maurizio, Tomei, Thiago, Touranakou, Mary

    ISSN: 2632-2153, 2632-2153
    Vydavateľské údaje: Bristol IOP Publishing 01.12.2023
    “…In high energy physics, one of the most important processes for collider data analysis is the comparison of collected and simulated data. Nowadays the…”
    Získať plný text
    Journal Article
  9. 9

    Interpreting Disentangled Representations of Person-Specific Convolutional Variational Autoencoders of Spatially Preserving EEG Topographic Maps via Clustering and Visual Plausibility Autor Ahmed, Taufique, Longo, Luca

    ISSN: 2078-2489, 2078-2489
    Vydavateľské údaje: Basel MDPI AG 01.09.2023
    Vydané v Information (Basel) (01.09.2023)
    “…Dimensionality reduction and producing simple representations of electroencephalography (EEG) signals are challenging problems. Variational autoencoders (VAEs)…”
    Získať plný text
    Journal Article
  10. 10

    LHC hadronic jet generation using convolutional variational autoencoders with normalizing flows Autor Orzari, Breno, Chernyavskaya, Nadezda, Cobe, Raphael, Duarte, Javier, Fialho, Jefferson, Gunopulos, Dimitrios, Kansal, Raghav, Pierini, Maurizio, Tomei, Thiago, Touranakou, Mary

    ISSN: 2632-2153, 2632-2153
    Vydavateľské údaje: United States IOP Publishing 31.10.2023
    “…In high energy physics, one of the most important processes for collider data analysis is the comparison of collected and simulated data. Nowadays the…”
    Získať plný text
    Journal Article
  11. 11

    Synthetic Generation of Cardiac MR Images Combining Convolutional Variational Autoencoders and Style Transfer Autor Jaen-Lorites, Jose Manuel, Perez-Pelegri, Manuel, Laparra, Valero, Lopez-Lereu, Maria Pilar, Monmeneu, Jose Vicente, Maceira, Alicia M., Moratal, David

    ISSN: 2694-0604, 2694-0604
    Vydavateľské údaje: IEEE 01.01.2022
    “… Convolutional Variational Autoencoder (CVAe) is a deep learning technique which allows to generate synthetic images, but sometimes the synthetic images can be slightly blurred…”
    Získať plný text
    Konferenčný príspevok.. Journal Article
  12. 12

    Convolutional Variational Autoencoders for Spectrogram Compression in Automatic Speech Recognition Autor Iakovenko, Olga, Bondarenko, Ivan

    ISSN: 2331-8422
    Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 04.10.2024
    Vydané v arXiv.org (04.10.2024)
    “…), but in practice they are hard to use due to a complex dimensionality of a feature space. The following paper presents an alternative approach towards generating compressed spectrogram representation, based on Convolutional Variational Autoencoders (VAE…”
    Získať plný text
    Paper
  13. 13

    Scalable Graph Convolutional Variational Autoencoders Autor Unyi, Daniel, Gyires-Toth, Balint

    Vydavateľské údaje: IEEE 19.05.2021
    “…Autoencoders are widely used for self-supervised representation learning. Variational autoencoders (VAEs), a special type of autoencoders, are proven to be…”
    Získať plný text
    Konferenčný príspevok..
  14. 14

    Convolutional Variational Autoencoders for Image Clustering Autor Nellas, Ioannis A., Tasoulis, Sotiris K., Plagianakos, Vassilis P.

    ISSN: 2375-9259
    Vydavateľské údaje: IEEE 01.12.2021
    “…The problem of data clustering is one of the most fundamental and well studied problems of unsupervised learning. Image clustering, refers to one of the most…”
    Získať plný text
    Konferenčný príspevok..
  15. 15

    Image De-Noising Using Convolutional Variational Autoencoders Autor Sreeteish, M

    ISSN: 2321-9653, 2321-9653
    Vydavateľské údaje: 30.06.2022
    “…Typically, image noise is random colour information in picture pixels that serves as an unfavourable by-product of the image, obscuring the intended…”
    Získať plný text
    Journal Article
  16. 16

    On the Exploration of Convolutional Variational Autoencoders for Analog Integrated Circuit Post-Placement Performance Regression Autor Almeida, Carlos, Oliveira, Marco, Martins, Ricardo

    ISSN: 2575-4890
    Vydavateľské údaje: IEEE 07.07.2025
    “… Here, deep learning (DL) models, namely convolutional variational autoencoders (VAEs) and multi-layer perceptrons…”
    Získať plný text
    Konferenčný príspevok..
  17. 17

    DiffuScope: A diffusion-regularized autoencoder for spatial transcriptomic clustering Autor Shi, Hua, Yi, Ding, Cui, Yang, Wang, Ruheng, Li, Yan, Ao, Chunyan, Guo, Ruihua, Zhang, Weihang, Peng, Tao, Le, Yuying, Cui, Yaxuan, Wei, Leyi

    ISSN: 1476-9271, 1476-928X, 1476-928X
    Vydavateľské údaje: England Elsevier Ltd 01.02.2026
    Vydané v Computational biology and chemistry (01.02.2026)
    “… To address this challenge, we propose DiffuScope, a clustering framework based on Graph Convolutional Variational Autoencoders (GC-VAE…”
    Získať plný text
    Journal Article
  18. 18

    Denoising Convolutional Variational Autoencoders-Based Feature Learning for Automatic Detection of Plant Diseases Autor Zilvan, Vicky, Ramdan, Ade, Suryawati, Endang, Kusumo, R. Budiarianto S., Krisnandi, Dikdik, Pardede, Hilman F.

    Vydavateľské údaje: IEEE 01.10.2019
    “…Early detection is critical for maintaining quantity and quality of farming commodity. Currently, detection of plant diseases still requires human expertise…”
    Získať plný text
    Konferenčný príspevok..
  19. 19

    Ship Detection in SAR Images Using Convolutional Variational Autoencoders Autor Ferreira, Nuno, Silveira, Margarida

    ISSN: 2153-7003
    Vydavateľské údaje: IEEE 26.09.2020
    “… We first learn representations of the SAR images with a convolutional Variational Autoencoder…”
    Získať plný text
    Konferenčný príspevok..
  20. 20

    LHC Hadronic Jet Generation Using Convolutional Variational Autoencoders with Normalizing Flows Autor Orzari, Breno, Chernyavskaya, Nadezda, Cobe, Raphael, Duarte, Javier, Fialho, Jefferson, Gunopulos, Dimitrios, Kansal, Raghav, Pierini, Maurizio, Tomei, Thiago, Touranakou, Mary

    ISSN: 2331-8422
    Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 08.11.2023
    Vydané v arXiv.org (08.11.2023)
    “…In high energy physics, one of the most important processes for collider data analysis is the comparison of collected and simulated data. Nowadays the…”
    Získať plný text
    Paper