Výsledky vyhledávání - "bayesian autoencoder"

  1. 1

    Variational Bayesian Autoencoder for Channel Compression and Feedback in Massive MIMO Systems Autor Zheng, Xuanyu, Bi, Yuanyuan, Guo, Huayan, Lau, Vincent

    ISSN: 1938-1883
    Vydáno: IEEE 28.05.2023
    “…In this paper, we propose a Variational Bayesian Autoencoder (VBA)-based channel state information (CSI…”
    Získat plný text
    Konferenční příspěvek
  2. 2

    Towards trustworthy cybersecurity operations using Bayesian Deep Learning to improve uncertainty quantification of anomaly detection Autor Yang, Tengfei, Qiao, Yuansong, Lee, Brian

    ISSN: 0167-4048
    Vydáno: Elsevier Ltd 01.09.2024
    Vydáno v Computers & security (01.09.2024)
    “… In this work we investigate the use of Bayesian Autoencoder (BAE) models for uncertainty quantification in anomaly detection…”
    Získat plný text
    Journal Article
  3. 3

    Explaining Probabilistic Bayesian Neural Networks for Cybersecurity Intrusion Detection Autor Yang, Tengfei, Qiao, Yuansong, Lee, Brian

    ISSN: 2169-3536, 2169-3536
    Vydáno: IEEE 2024
    Vydáno v IEEE access (2024)
    “… For enhance the explainability of BNN model concerning uncertainty quantification, this paper proposes a Bayesian explanatory model that accounts for uncertainties inherent in Bayesian Autoencoder…”
    Získat plný text
    Journal Article
  4. 4

    Least Square Variational Bayesian Autoencoder with Regularization Autor Ramachandra, Gautam

    ISSN: 2331-8422
    Vydáno: Ithaca Cornell University Library, arXiv.org 11.07.2017
    Vydáno v arXiv.org (11.07.2017)
    “…In recent years Variation Autoencoders have become one of the most popular unsupervised learning of complicated distributions.Variational Autoencoder (VAE)…”
    Získat plný text
    Paper
  5. 5

    Energy-Aware Anomaly Detection in Wind Turbine SCADA Systems Autor Ciocan, Angela Voinea, Hamrioui, Sofiane, Lorenz, Pascal, Courboulay, Vincent, Ciocan, Adrian

    ISSN: 1847-358X
    Vydáno: University of Split, FESB 18.09.2025
    “…This paper presents a hybrid AI-based framework for robust anomaly detection in wind turbine SCADA systems, combining Bayesian Autoencoders with Transformer architectures…”
    Získat plný text
    Konferenční příspěvek
  6. 6

    Bayesian Autoencoders for Drift Detection in Industrial Environments Autor Yong, Bang Xiang, Fathy, Yasmin, Brintrup, Alexandra

    Vydáno: IEEE 01.06.2020
    “… To this end, we first propose the development of Bayesian Autoencoders to quantify epistemic and aleatoric uncertainties…”
    Získat plný text
    Konferenční příspěvek
  7. 7

    Bayesian autoencoders with uncertainty quantification: Towards trustworthy anomaly detection Autor Yong, Bang Xiang, Brintrup, Alexandra

    ISSN: 0957-4174, 1873-6793
    Vydáno: Elsevier Ltd 15.12.2022
    Vydáno v Expert systems with applications (15.12.2022)
    “… Therefore, in this work, the formulation of Bayesian autoencoders (BAEs) is adopted to quantify the total anomaly uncertainty, comprising epistemic and aleatoric uncertainties…”
    Získat plný text
    Journal Article
  8. 8

    Revisiting Bayesian Autoencoders With MCMC Autor Chandra, Rohitash, Jain, Mahir, Maharana, Manavendra, Krivitsky, Pavel N.

    ISSN: 2169-3536, 2169-3536
    Vydáno: Piscataway IEEE 2022
    Vydáno v IEEE access (2022)
    “… This paper presents Bayesian autoencoders powered by MCMC sampling implemented using parallel computing and Langevin-gradient proposal distribution…”
    Získat plný text
    Journal Article
  9. 9

    Two-step hybrid collaborative filtering using deep variational Bayesian autoencoders Autor Nahta, Ravi, Meena, Yogesh Kumar, Gopalani, Dinesh, Chauhan, Ganpat Singh

    ISSN: 0020-0255, 1872-6291
    Vydáno: Elsevier Inc 01.07.2021
    Vydáno v Information sciences (01.07.2021)
    “… the latent vector representations when users or items are added to the underlying dataset. To address these issues, we propose a two-step hybrid variational Bayesian autoencoder to characterize the uncertainty of predicted ratings…”
    Získat plný text
    Journal Article
  10. 10

    Coalitional Bayesian autoencoders: Towards explainable unsupervised deep learning with applications to condition monitoring under covariate shift Autor Yong, Bang Xiang, Brintrup, Alexandra

    ISSN: 1568-4946
    Vydáno: Elsevier B.V 01.07.2022
    Vydáno v Applied soft computing (01.07.2022)
    “…, the Bayesian autoencoder (BAE). These formulations contrast the conventional post-hoc explanation methods for AEs, which incur additional modelling effort and implementations…”
    Získat plný text
    Journal Article
  11. 11

    Fast and precise single-cell data analysis using a hierarchical autoencoder Autor Tran, Duc, Nguyen, Hung, Tran, Bang, La Vecchia, Carlo, Luu, Hung N., Nguyen, Tin

    ISSN: 2041-1723, 2041-1723
    Vydáno: London Nature Publishing Group UK 15.02.2021
    Vydáno v Nature communications (15.02.2021)
    “… The second module is a stacked Bayesian autoencoder that projects the data onto a low-dimensional space (compressed…”
    Získat plný text
    Journal Article
  12. 12

    Revisiting Bayesian Autoencoders with MCMC Autor Chandra, Rohitash, Jain, Mahir, Maharana, Manavendra, Krivitsky, Pavel N

    ISSN: 2331-8422
    Vydáno: Ithaca Cornell University Library, arXiv.org 28.04.2022
    Vydáno v arXiv.org (28.04.2022)
    “… This paper presents Bayesian autoencoders powered by MCMC sampling implemented using parallel computing and Langevin-gradient proposal distribution…”
    Získat plný text
    Paper
  13. 13

    Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes Autor Tran, Ba-Hien, Shahbaba, Babak, Mandt, Stephan, Filippone, Maurizio

    ISSN: 2640-3498, 2640-3498
    Vydáno: United States 01.07.2023
    “…We present a fully Bayesian autoencoder model that treats both local latent variables and global decoder parameters in a Bayesian fashion…”
    Získat plný text
    Journal Article
  14. 14

    Bayesian Autoencoders for Drift Detection in Industrial Environments Autor Bang, Xiang Yong, Fathy, Yasmin, Brintrup, Alexandra

    ISSN: 2331-8422
    Vydáno: Ithaca Cornell University Library, arXiv.org 28.07.2021
    Vydáno v arXiv.org (28.07.2021)
    “… To this end, we first propose the development of Bayesian Autoencoders to quantify epistemic and aleatoric uncertainties…”
    Získat plný text
    Paper
  15. 15

    Model Selection for Bayesian Autoencoders Autor Ba-Hien Tran, Rossi, Simone, Milios, Dimitrios, Michiardi, Pietro, Bonilla, Edwin V, Filippone, Maurizio

    ISSN: 2331-8422
    Vydáno: Ithaca Cornell University Library, arXiv.org 11.06.2021
    Vydáno v arXiv.org (11.06.2021)
    “…We develop a novel method for carrying out model selection for Bayesian autoencoders (BAEs…”
    Získat plný text
    Paper
  16. 16

    Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes Autor Ba-Hien Tran, Shahbaba, Babak, Mandt, Stephan, Filippone, Maurizio

    ISSN: 2331-8422
    Vydáno: Ithaca Cornell University Library, arXiv.org 09.02.2023
    Vydáno v arXiv.org (09.02.2023)
    “… To address this issue, we propose a novel Sparse Gaussian Process Bayesian Autoencoder (SGPBAE) model in which we impose fully Bayesian sparse Gaussian Process priors on the latent space of a Bayesian Autoencoder…”
    Získat plný text
    Paper
  17. 17

    Bayesian autoencoders with uncertainty quantification: Towards trustworthy anomaly detection Autor Bang, Xiang Yong, Brintrup, Alexandra

    ISSN: 2331-8422
    Vydáno: Ithaca Cornell University Library, arXiv.org 25.02.2022
    Vydáno v arXiv.org (25.02.2022)
    “… Therefore, in this work, the formulation of Bayesian autoencoders (BAEs) is adopted to quantify the total anomaly uncertainty, comprising epistemic and aleatoric uncertainties…”
    Získat plný text
    Paper
  18. 18

    Coalitional Bayesian Autoencoders -- Towards explainable unsupervised deep learning Autor Bang, Xiang Yong, Brintrup, Alexandra

    ISSN: 2331-8422
    Vydáno: Ithaca Cornell University Library, arXiv.org 19.10.2021
    Vydáno v arXiv.org (19.10.2021)
    “… of log-likelihood estimate, which naturally arise from the probabilistic formulation of the AE called Bayesian Autoencoders (BAE…”
    Získat plný text
    Paper
  19. 19

    Bayesian autoencoders for data-driven discovery of coordinates, governing equations and fundamental constants Autor L Mars Gao, Kutz, J Nathan

    ISSN: 2331-8422
    Vydáno: Ithaca Cornell University Library, arXiv.org 19.11.2022
    Vydáno v arXiv.org (19.11.2022)
    “…Recent progress in autoencoder-based sparse identification of nonlinear dynamics (SINDy) under \(\ell_1\) constraints allows joint discoveries of governing…”
    Získat plný text
    Paper
  20. 20

    Bayesian Autoencoders: Analysing and Fixing the Bernoulli likelihood for Out-of-Distribution Detection Autor Bang, Xiang Yong, Pearce, Tim, Brintrup, Alexandra

    ISSN: 2331-8422
    Vydáno: Ithaca Cornell University Library, arXiv.org 28.07.2021
    Vydáno v arXiv.org (28.07.2021)
    “…After an autoencoder (AE) has learnt to reconstruct one dataset, it might be expected that the likelihood on an out-of-distribution (OOD) input would be low…”
    Získat plný text
    Paper