Suchergebnisse - "automated machine learning algorithms"
-
1
Graph-informed convolutional autoencoder to classify brain responses during sleep
ISSN: 1662-453X, 1662-4548, 1662-453XVeröffentlicht: Switzerland Frontiers Media S.A 28.04.2025Veröffentlicht in Frontiers in neuroscience (28.04.2025)“… Automated machine-learning algorithms that analyze biomedical signals have been used to identify sleep patterns and health issues …”
Volltext
Journal Article -
2
A characteristic cerebellar biosignature for bipolar disorder, identified with fully automatic machine learning
ISSN: 2667-2421, 2667-2421Veröffentlicht: Elsevier Ltd 01.12.2023Veröffentlicht in IBRO neuroscience reports (01.12.2023)“… of the cerebellum in the pathogenesis of bipolar disorder.With this aim, user-friendly, fully automated machine learning algorithms can achieve extremely high classification …”
Volltext
Journal Article -
3
Data-driven estimation of blood pressure using photoplethysmographic signals
ISBN: 1457702207, 9781457702204ISSN: 1557-170X, 2694-0604, 2694-0604Veröffentlicht: United States IEEE 01.08.2016Veröffentlicht in 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (01.08.2016)“… The estimation is data-driven, we use automated machine learning algorithms instead of mathematical models …”
Volltext
Tagungsbericht Journal Article -
4
Automated 3D mapping of baseline and 12-month associations between three verbal memory measures and hippocampal atrophy in 490 ADNI subjects
ISSN: 1053-8119, 1095-9572, 1095-9572Veröffentlicht: United States Elsevier Inc 15.05.2010Veröffentlicht in NeuroImage (Orlando, Fla.) (15.05.2010)“… We used a previously validated automated machine learning algorithm based on adaptive boosting to segment the hippocampi in baseline and 12-month follow-up 3D T1-weighted brain MRIs of 150 cognitively normal elderly (NC …”
Volltext
Journal Article -
5
3D mapping of associations between Amyloid-PET and CSF biomarkers and hippocampal morphology in normal aging and Alzheimer's disease
ISSN: 1053-8119, 1095-9572Veröffentlicht: Amsterdam Elsevier Inc 01.07.2009Veröffentlicht in NeuroImage (Orlando, Fla.) (01.07.2009)“… Methods We used an automated machine learning algorithm, based on adaptive boosting, to segment 3D surface models of the hippocampi in baseline 3D T1-weighted brain MRI scans of 282 ADNI subjects …”
Volltext
Journal Article

