Výsledky vyhledávání - "autoencoder networks"

  1. 1

    Improving the repeatability of two-rate model parameter estimations by using autoencoder networks Autor Ozdemir, Murat C, Eggert, Thomas, Straube, Andreas

    ISSN: 1875-7855, 1875-7855
    Vydáno: Netherlands 2019
    Vydáno v Progress in brain research (2019)
    “… In this paper, we collected time-series data from an experimental paradigm involving repeated training and investigated the effect of various cleaning methods, including an autoencoder network (AE…”
    Zjistit podrobnosti o přístupu
    Journal Article
  2. 2

    Enhancing the Myoelectric Pattern Recognition Robustness to Electrode Shift by an Autoencoder-Based Feature Calibrator Autor Gao, Ge, Li, Yao, Liu, Yunfei, Zhang, Xu, Ruan, Yuwen

    ISSN: 2694-0604, 2694-0604
    Vydáno: United States IEEE 01.07.2024
    “… Subsequently, the flattened shifted view features serve as input for the autoencoder network, facilitating the model to learn a more resilient feature representation based…”
    Získat plný text
    Konferenční příspěvek Journal Article
  3. 3

    Mitigating the Concurrent Interference of Electrode Shift and Loosening in Myoelectric Pattern Recognition Using Siamese Autoencoder Network Autor Gao, Ge, Zhang, Xu, Chen, Xiang, Chen, Zhang

    ISSN: 1534-4320, 1558-0210, 1558-0210
    Vydáno: United States IEEE 2024
    “…The objective of this work is to develop a novel myoelectric pattern recognition (MPR) method to mitigate the concurrent interference of electrode shift and…”
    Získat plný text
    Journal Article
  4. 4

    Self-supervised autoencoder network for robust heart rate extraction from noisy photoplethysmogram: Applying blind source separation to biosignal analysis Autor Webster, Matthew B., Lee, Dongheon, Lee, Joonnyong

    ISSN: 0010-4825, 1879-0534, 1879-0534
    Vydáno: United States Elsevier Ltd 01.12.2025
    Vydáno v Computers in biology and medicine (01.12.2025)
    “… The trained network is then applied to a noisy PPG dataset collected during the daily activities of nine subjects and a surgical dataset comprising 4,681 patients…”
    Získat plný text
    Journal Article
  5. 5

    Spatiotemporal Graph Autoencoder Network for Skeleton-Based Human Action Recognition Autor Abduljalil, Hosam, Elhayek, Ahmed, Marish Ali, Abdullah, Alsolami, Fawaz

    ISSN: 2673-2688, 2673-2688
    Vydáno: Basel MDPI AG 01.09.2024
    Vydáno v AI (Basel) (01.09.2024)
    “… In this study, we propose a novel, highly accurate spatiotemporal graph autoencoder network for HAR, designated as GA-GCN…”
    Získat plný text
    Journal Article
  6. 6

    Brain fingerprinting and cognitive behavior predicting using functional connectome of high inter-subject variability Autor Lu, Jiayu, Yan, Tianyi, Yang, Lan, Zhang, Xi, Li, Jiaxin, Li, Dandan, Xiang, Jie, Wang, Bin

    ISSN: 1053-8119, 1095-9572, 1095-9572
    Vydáno: United States Elsevier Inc 15.07.2024
    Vydáno v NeuroImage (Orlando, Fla.) (15.07.2024)
    “…•High inter-subject variability for brain fingerprinting and cognitive behavior predicting…”
    Získat plný text
    Journal Article
  7. 7

    Rejecting Novel Motions in High-Density Myoelectric Pattern Recognition Using Hybrid Neural Networks Autor Wu, Le, Chen, Xun, Chen, Xiang, Zhang, Xu

    ISSN: 1662-5218, 1662-5218
    Vydáno: Switzerland Frontiers Research Foundation 28.03.2022
    Vydáno v Frontiers in neurorobotics (28.03.2022)
    “…, a convolutional neural network (CNN) and autoencoder networks. In the framework, the CNN was first used to extract spatio-temporal information conveyed in the sEMG data recorded via high-density (HD…”
    Získat plný text
    Journal Article
  8. 8

    Functional connectome fingerprinting: Identifying individuals and predicting cognitive functions via autoencoder Autor Cai, Biao, Zhang, Gemeng, Zhang, Aiying, Xiao, Li, Hu, Wenxing, Stephen, Julia M., Wilson, Tony W., Calhoun, Vince D., Wang, Yu‐Ping

    ISSN: 1065-9471, 1097-0193, 1097-0193
    Vydáno: Hoboken, USA John Wiley & Sons, Inc 15.06.2021
    Vydáno v Human brain mapping (15.06.2021)
    “… In this paper, we propose to enhance the uniqueness of individual connectome based on an autoencoder network…”
    Získat plný text
    Journal Article
  9. 9

    Facial Image Denoising Using Convolutional Autoencoder Network Autor Tun, Naing Min, Gavrilov, Alexander I., Tun, Nyan Linn

    Vydáno: IEEE 01.05.2020
    “… In this paper, we show that the solution of denoising process using the autoencoder networks based on the ORL face database…”
    Získat plný text
    Konferenční příspěvek
  10. 10

    Stacked Sparse Autoencoder Modeling Using the Synergy of Airborne LiDAR and Satellite Optical and SAR Data to Map Forest Above-Ground Biomass Autor Shao, Zhenfeng, Zhang, Linjing, Wang, Lei

    ISSN: 1939-1404, 2151-1535
    Vydáno: Piscataway IEEE 01.12.2017
    “… However, field data are limited in remote and unmanaged areas. In addition, optical reflectance usually saturates at high-density biomass level and is subject to cloud contaminations…”
    Získat plný text
    Journal Article
  11. 11

    Industrial Process Fault Detection with Multi-View Feature Fusion Attention Mechanism Assisted Autoencoder Network Autor Tong, Yifan, Wang, Zhaojing, Yan, Xiaoyun, Hu, Xinrong, Li, Lijun

    ISSN: 2693-9371
    Vydáno: IEEE 01.07.2024
    “… To address this gap, a novel fault detection framework is introduced in this study, leveraging a Multi-View Feature Fusion At-tention Mechanism Assisted Autoencoder Network (MFA-AE…”
    Získat plný text
    Konferenční příspěvek
  12. 12

    Artificial Intelligence in Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) Data Analysis—Toward Retinal Metabolic Diagnostics Autor Thiemann, Natalie, Sonntag, Svenja Rebecca, Kreikenbohm, Marie, Böhmerle, Giulia, Stagge, Jessica, Grisanti, Salvatore, Martinetz, Thomas, Miura, Yoko

    ISSN: 2075-4418, 2075-4418
    Vydáno: Switzerland MDPI AG 01.02.2024
    Vydáno v Diagnostics (Basel) (01.02.2024)
    “…) and autoencoder networks. The SVM was the only tested AI method, which was able to distinguish τ…”
    Získat plný text
    Journal Article
  13. 13

    Realistic simulation of virtual multi-scale, multi-modal patient trajectories using Bayesian networks and sparse auto-encoders Autor Sood, Meemansa, Sahay, Akrishta, Karki, Reagon, Emon, Mohammad Asif, Vrooman, Henri, Hofmann-Apitius, Martin, Fröhlich, Holger

    ISSN: 2045-2322, 2045-2322
    Vydáno: London Nature Publishing Group UK 03.07.2020
    Vydáno v Scientific reports (03.07.2020)
    “…Translational research of many disease areas requires a longitudinal understanding of disease development and progression across all biologically relevant…”
    Získat plný text
    Journal Article
  14. 14

    Multimodal Representation Learning for Alzheimer's Disease Diagnosis Autor Fan, Lian-xi, Liu, Yan-bei, Wang, Wen, Geng, Lei, Wu, Jun, Zhang, Fang, Xiao, Zhi-tao

    ISSN: 1002-137X
    Vydáno: Chongqing Guojia Kexue Jishu Bu 01.10.2021
    Vydáno v Ji suan ji ke xue (01.10.2021)
    “… no cure.Its early diagnosis and treatment have always been the focus of attention.The neuroimaging data of subjects has an important auxiliary role in the diagnosis…”
    Získat plný text
    Journal Article
  15. 15

    Dynamic historical information incorporated attention deep learning model for industrial soft sensor modeling Autor Wang, Yalin, Liu, Diju, Liu, Chenliang, Yuan, Xiaofeng, Wang, Kai, Yang, Chunhua

    ISSN: 1474-0346, 1873-5320
    Vydáno: Elsevier Ltd 01.04.2022
    Vydáno v Advanced engineering informatics (01.04.2022)
    “… To combat this issue, a novel attention-based dynamic stacked autoencoder networks (AD-SAE) for soft sensor modeling is proposed in this paper…”
    Získat plný text
    Journal Article
  16. 16

    Speech Enhancement for Hearing Impaired Based on Bandpass Filters and a Compound Deep Denoising Autoencoder Autor AL-Taai, Raghad Yaseen Lazim, Wu, Xiaojun

    ISSN: 2073-8994, 2073-8994
    Vydáno: Basel MDPI AG 01.08.2021
    Vydáno v Symmetry (Basel) (01.08.2021)
    “…) multiple deep denoising autoencoder networks, with each working for a small specific enhancement task and learning to handle a subset of the whole…”
    Získat plný text
    Journal Article
  17. 17

    Functional Connectivity Networks with Latent Distributions for Mild Cognitive Impairment Identification Autor Tang, Qiling, Lu, Yuhong, Cai, Bilian, Wang, Yan

    ISSN: 1618-727X, 0897-1889, 1618-727X
    Vydáno: Cham Springer International Publishing 01.10.2023
    Vydáno v Journal of digital imaging (01.10.2023)
    “… Due to the complexity and variability of rs-fMRI signal, we consider it as a random variable, and utilize variational autoencoder networks to encode it as a confidence distribution in the latent…”
    Získat plný text
    Journal Article
  18. 18

    Mechanisms of Categorization in Infancy Autor Mareschal, Denis, French, Robert

    ISSN: 1525-0008, 1532-7078, 1532-7078
    Vydáno: Oxford, UK Blackwell Publishing Ltd 01.01.2000
    Vydáno v Infancy (01.01.2000)
    “…‐month‐old infants (Younger, 1985). Simple autoencoder networks were exposed to the same stimuli used to test 10‐month‐olds…”
    Získat plný text
    Journal Article
  19. 19

    Surface-based Multi-Axis Longitudinal Disentanglement Using Contrastive Learning for Alzheimer's Disease Autor Zhang, Jianwei, Shi, Yonggang

    Vydáno: Germany 2026
    “… Recent advancements in deep learning have catalyzed the development of disentanglement techniques in Autoencoder networks, aiming to segregate longitudinal changes attributable to aging…”
    Zjistit podrobnosti o přístupu
    Journal Article
  20. 20

    BrainSTEAM: A Practical Pipeline for Connectome-based fMRI Analysis towards Subject Classification Autor Li, Alexis, Yang, Yi, Cui, Hejie, Yang, Carl

    ISBN: 9789811286421, 9811286426, 9811286434, 9811286418, 9789811286414, 9789811286438
    ISSN: 2335-6936, 2335-6936
    Vydáno: United States WORLD SCIENTIFIC 01.01.2024
    Vydáno v Biocomputing 2024 (01.01.2024)
    “… To address such challenge, this study proposes BrainSTEAM, an integrated framework featuring a spatio-temporal module that consists of an EdgeConv GNN model, an autoencoder network, and a Mixup strategy…”
    Získat plný text
    Kapitola Journal Article