Suchergebnisse - "algorithms in high dimensions"

  1. 1

    Algorithms for Numerical Analysis in High Dimensions von Beylkin, Gregory, Mohlenkamp, Martin J.

    ISSN: 1064-8275, 1095-7197
    Veröffentlicht: Philadelphia, PA Society for Industrial and Applied Mathematics 01.01.2005
    Veröffentlicht in SIAM journal on scientific computing (01.01.2005)
    “… Nearly every numerical analysis algorithm has computational complexity that scales exponentially in the underlying physical dimension. The separated …”
    Volltext
    Journal Article
  2. 2

    Improved Nelder-Mead algorithm in high dimensions with adaptive parameters based on Chebyshev spacing points von Mehta, V.K.

    ISSN: 0305-215X, 1029-0273
    Veröffentlicht: Abingdon Taylor & Francis 02.10.2020
    Veröffentlicht in Engineering optimization (02.10.2020)
    “… The work presented here concerns such values of the Nelder-Mead algorithm's parameters that help improve the convergence and success rate of the algorithm in high dimensions …”
    Volltext
    Journal Article
  3. 3

    An Auxiliary Variable Method for Markov Chain Monte Carlo Algorithms in High Dimension von Marnissi, Yosra, Chouzenoux, Emilie, Benazza-Benyahia, Amel, Pesquet, Jean-Christophe

    ISSN: 1099-4300, 1099-4300
    Veröffentlicht: Basel MDPI AG 07.02.2018
    Veröffentlicht in Entropy (Basel, Switzerland) (07.02.2018)
    “… In this paper, we are interested in Bayesian inverse problems where either the data fidelity term or the prior distribution is Gaussian or driven from a …”
    Volltext
    Journal Article
  4. 4

    Population Monte Carlo Algorithm in High Dimensions von Lee, Jeong Eun, McVinish, Ross, Mengersen, Kerrie

    ISSN: 1387-5841, 1573-7713
    Veröffentlicht: Boston Springer US 01.06.2011
    Veröffentlicht in Methodology and computing in applied probability (01.06.2011)
    “… The population Monte Carlo algorithm is an iterative importance sampling scheme for solving static problems. We examine the population Monte Carlo algorithm in …”
    Volltext
    Journal Article
  5. 5

    Bi-quadratic polynomial approach for global convergent algorithm in high dimensions coefficient inverse problems von Wang, Quan-Fang

    ISSN: 1742-6596, 1742-6588, 1742-6596
    Veröffentlicht: Bristol IOP Publishing 01.04.2011
    Veröffentlicht in Journal of physics. Conference series (01.04.2011)
    “… Sequential minimization algorithm in convexification approach established a stable approximate solution via minimizing a finite sequence of strictly convex …”
    Volltext
    Journal Article
  6. 6

    Nested sampling for physical scientists von Ashton, Greg, Bernstein, Noam, Buchner, Johannes, Chen, Xi, Csányi, Gábor, Fowlie, Andrew, Feroz, Farhan, Griffiths, Matthew, Handley, Will, Habeck, Michael, Higson, Edward, Hobson, Michael, Lasenby, Anthony, Parkinson, David, Pártay, Livia B., Pitkin, Matthew, Schneider, Doris, Speagle, Joshua S., South, Leah, Veitch, John, Wacker, Philipp, Wales, David J., Yallup, David

    ISSN: 2662-8449, 2662-8449
    Veröffentlicht: London Nature Publishing Group 01.12.2022
    Veröffentlicht in Nature Reviews Methods Primers (01.12.2022)
    “… The principles of nested sampling are summarized and recent developments using efficient nested sampling algorithms in high dimensions surveyed, including methods for sampling from the constrained prior …”
    Volltext
    Journal Article
  7. 7

    Optimal Scaling for the Proximal Langevin Algorithm in High Dimensions von Pillai, Natesh S

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 21.04.2022
    Veröffentlicht in arXiv.org (21.04.2022)
    “… The Metropolis-adjusted Langevin (MALA) algorithm is a sampling algorithm that incorporates the gradient of the logarithm of the target density in its proposal …”
    Volltext
    Paper
  8. 8
  9. 9

    Quantum Circuits for partial differential equations via Schrödingerisation von Hu, Junpeng, Jin, Shi, Liu, Nana, Zhang, Lei

    ISSN: 2521-327X, 2521-327X
    Veröffentlicht: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften 12.12.2024
    Veröffentlicht in Quantum (Vienna, Austria) (12.12.2024)
    “… Quantum computing has emerged as a promising avenue for achieving significant speedup, particularly in large-scale PDE simulations, compared to classical …”
    Volltext
    Journal Article
  10. 10

    Optimal scaling and diffusion limits for the Langevin algorithm in high dimensions von Pillai, Natesh S, Stuart, Andrew M, Thiéry, Alexandre H

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 28.11.2012
    Veröffentlicht in arXiv.org (28.11.2012)
    “… The Metropolis-adjusted Langevin (MALA) algorithm is a sampling algorithm which makes local moves by incorporating information about the gradient of the …”
    Volltext
    Paper
  11. 11

    Diffusion limits of the random walk Metropolis algorithm in high dimensions von Mattingly, Jonathan C, Pillai, Natesh S, Stuart, Andrew M

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 04.10.2012
    Veröffentlicht in arXiv.org (04.10.2012)
    “… Diffusion limits of MCMC methods in high dimensions provide a useful theoretical tool for studying computational complexity. In particular, they lead directly …”
    Volltext
    Paper
  12. 12

    Principled Statistical Approaches for Sampling and Inference in High Dimensions von Dwivedi, Raaz

    ISBN: 9798380620758
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2021
    “… : We provide explicit non-asymptotic guarantees for state-of-the-art sampling algorithms in high dimensions that can help the user pick a sampling method …”
    Volltext
    Dissertation
  13. 13

    Quantum Circuits for partial differential equations via Schrödingerisation von Hu, Junpeng, Shi, Jin, Liu, Nana, Zhang, Lei

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 05.12.2024
    Veröffentlicht in arXiv.org (05.12.2024)
    “… Quantum computing has emerged as a promising avenue for achieving significant speedup, particularly in large-scale PDE simulations, compared to classical …”
    Volltext
    Paper
  14. 14

    Geometry of multidimensional Farey summation algorithm and frieze patterns von Karpenkov, Oleg, Matty van Son

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 16.10.2024
    Veröffentlicht in arXiv.org (16.10.2024)
    “… In this paper we develop a new geometric approach to subtractive continued fraction algorithms in high dimensions …”
    Volltext
    Paper
  15. 15

    A Catalyst Framework for the Quantum Linear System Problem via the Proximal Point Algorithm von Kim, Junhyung Lyle, Nai-Hui Chia, Kyrillidis, Anastasios

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 19.06.2024
    Veröffentlicht in arXiv.org (19.06.2024)
    “… Solving systems of linear equations is a fundamental problem, but it can be computationally intensive for classical algorithms in high dimensions …”
    Volltext
    Paper
  16. 16

    Optimal Scaling of Random-Walk Metropolis Algorithms on General Target Distributions von Yang, Jun, Roberts, Gareth O, Rosenthal, Jeffrey S

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 04.05.2020
    Veröffentlicht in arXiv.org (04.05.2020)
    “… One main limitation of the existing optimal scaling results for Metropolis--Hastings algorithms is that the assumptions on the target distribution are …”
    Volltext
    Paper
  17. 17

    alpha-Shape Based Classification with Applications to Optical Character Recognition von Packer, E., Tzadok, A., Kluzner, V.

    ISBN: 1457713500, 9781457713507
    ISSN: 1520-5363
    Veröffentlicht: IEEE 01.09.2011
    “… -shape algorithms in high dimensions. We further show how to inelegantly choose suitable α …”
    Volltext
    Tagungsbericht
  18. 18

    A self-stabilizing MSA algorithm in high-dimension data stream von Kong, Xiangyu, Hu, Changhua, Han, Chongzhao

    ISSN: 0893-6080, 1879-2782, 1879-2782
    Veröffentlicht: Kidlington Elsevier Ltd 01.09.2010
    Veröffentlicht in Neural networks (01.09.2010)
    “… Minor subspace analysis (MSA) is a statistical method for extracting the subspace spanned by all the eigenvectors associated with the minor eigenvalues of the …”
    Volltext
    Journal Article
  19. 19

    High-dimensional scaling limits of piecewise deterministic sampling algorithms von Bierkens, Joris, Kamatani, Kengo, Roberts, Gareth O

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 30.07.2019
    Veröffentlicht in arXiv.org (30.07.2019)
    “… ) the scaling limits show qualitatively very different and rich behaviour. Based on these scaling limits the performance of the two algorithms in high dimensions can be compared …”
    Volltext
    Paper
  20. 20

    Sparse feature selection by information theory von Guangyao Zhou, Geman, Stuart, Buhmann, Joachim M.

    ISSN: 2157-8095
    Veröffentlicht: IEEE 01.06.2014
    “… Learning sparse structures in high dimensions defines a combinatorial selection problem of e.g. informative feature dimensions and a subsequent estimation task …”
    Volltext
    Tagungsbericht