Suchergebnisse - "algorithm parameter configuration"
-
1
Knowledge- and Model-Driven Deep Reinforcement Learning for Efficient Federated Edge Learning: Single- and Multi-Agent Frameworks
ISSN: 2831-316X, 2831-316XVeröffentlicht: IEEE 2025Veröffentlicht in IEEE transactions on machine learning in communications and networking (2025)“… a rigorous convergence analysis. We formulate a joint optimization problem for FL worker selection and algorithm parameter configuration to minimize the final test loss subject to time and energy constraints …”
Volltext
Journal Article