Výsledky vyhledávání - "adversarial autoencoder"

  1. 1

    Causal Adversarial Autoencoder for Disentangled SAR Image Representation and Few-Shot Target Recognition Autor Guo, Qian, Xu, Huilin, Xu, Feng

    ISSN: 0196-2892, 1558-0644
    Vydáno: New York IEEE 01.01.2023
    “…Lack of interpretability and weak generalization ability have become the major challenges with data-driven intelligent SAR-ATR technology, especially in…”
    Získat plný text
    Journal Article
  2. 2

    Unsupervised learning-based framework for indirect structural health monitoring using adversarial autoencoder Autor Calderon Hurtado, A., Kaur, K., Makki Alamdari, M., Atroshchenko, E., Chang, K.C., Kim, C.W.

    ISSN: 0022-460X, 1095-8568
    Vydáno: Elsevier Ltd 28.04.2023
    Vydáno v Journal of sound and vibration (28.04.2023)
    “…This paper studies the problem of bridge health monitoring in an unsupervised manner utilizing only the measured responses from a vehicle passing over a…”
    Získat plný text
    Journal Article
  3. 3

    druGAN: An Advanced Generative Adversarial Autoencoder Model for de Novo Generation of New Molecules with Desired Molecular Properties in Silico Autor Kadurin, Artur, Nikolenko, Sergey, Khrabrov, Kuzma, Aliper, Alex, Zhavoronkov, Alex

    ISSN: 1543-8392, 1543-8392
    Vydáno: United States 05.09.2017
    Vydáno v Molecular pharmaceutics (05.09.2017)
    “…Deep generative adversarial networks (GANs) are the emerging technology in drug discovery and biomarker development. In our recent work, we demonstrated a…”
    Zjistit podrobnosti o přístupu
    Journal Article
  4. 4

    OTB-AAE: Semi-supervised anomaly detection on industrial images based on Adversarial Autoencoder with Output-Turn-Back structure Autor Li, Xuewei, Jing, Junfeng, Bao, Junmin, Lu, Pengwen, Xie, Yaohua, An, Ying

    ISSN: 0018-9456, 1557-9662
    Vydáno: New York IEEE 01.01.2023
    “…Due to the unbalanced proportion of positive (non-anomalous) and negative (anomalous) samples obtained from industrial data collection, the development…”
    Získat plný text
    Journal Article
  5. 5

    Video anomaly detection and localization via multivariate gaussian fully convolution adversarial autoencoder Autor Li, Nanjun, Chang, Faliang

    ISSN: 0925-2312, 1872-8286
    Vydáno: Elsevier B.V 05.12.2019
    Vydáno v Neurocomputing (Amsterdam) (05.12.2019)
    “…In this paper, we present a novel deep learning based method for video anomaly detection and localization. The key idea of our approach is that the latent…”
    Získat plný text
    Journal Article
  6. 6

    Distilling from professors: Enhancing the knowledge distillation of teachers Autor Bang, Duhyeon, Lee, Jongwuk, Shim, Hyunjung

    ISSN: 0020-0255, 1872-6291
    Vydáno: Elsevier Inc 01.10.2021
    Vydáno v Information sciences (01.10.2021)
    “…•We raise the issue that existing KD methods overlook the quality of soft targets in KD performance.•We propose the professor model to provide high-quality and…”
    Získat plný text
    Journal Article
  7. 7

    Adversarial Autoencoder Network for Hyperspectral Unmixing Autor Jin, Qiwen, Ma, Yong, Fan, Fan, Huang, Jun, Mei, Xiaoguang, Ma, Jiayi

    ISSN: 2162-237X, 2162-2388, 2162-2388
    Vydáno: United States IEEE 01.08.2023
    “…Spectral unmixing (SU), which refers to extracting basic features (i.e., endmembers) at the subpixel level and calculating the corresponding proportion (i.e.,…”
    Získat plný text
    Journal Article
  8. 8
  9. 9

    An unsupervised adversarial autoencoder for cyber attack detection in power distribution grids Autor Zideh, Mehdi Jabbari, Khalghani, Mohammad Reza, Solanki, Sarika Khushalani

    ISSN: 0378-7796, 1873-2046
    Vydáno: Elsevier B.V 01.07.2024
    Vydáno v Electric power systems research (01.07.2024)
    “…Detection of cyber attacks in smart power distribution grids with unbalanced configurations poses challenges due to the inherent nonlinear nature of these…”
    Získat plný text
    Journal Article
  10. 10

    An active learning method using deep adversarial autoencoder-based sufficient dimension reduction neural network for high-dimensional reliability analysis Autor Bao, Yuequan, Sun, Huabin, Guan, Xiaoshu, Tian, Yuxuan

    ISSN: 0951-8320, 1879-0836
    Vydáno: Elsevier Ltd 01.07.2024
    “…Reliability analysis often requires time-consuming evaluations, especially when dealing with high-dimensional and nonlinear problems. To address this…”
    Získat plný text
    Journal Article
  11. 11

    The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology Autor Kadurin, Artur, Aliper, Alexander, Kazennov, Andrey, Mamoshina, Polina, Vanhaelen, Quentin, Khrabrov, Kuzma, Zhavoronkov, Alex

    ISSN: 1949-2553, 1949-2553
    Vydáno: United States 14.02.2017
    Vydáno v Oncotarget (14.02.2017)
    “…Recent advances in deep learning and specifically in generative adversarial networks have demonstrated surprising results in generating new images and videos…”
    Zjistit podrobnosti o přístupu
    Journal Article
  12. 12

    A data-driven methodology for bridge indirect health monitoring using unsupervised computer vision Autor Hurtado, A. Calderon, Alamdari, M. Makki, Atroshchenko, E., Chang, K.C., Kim, C.W.

    ISSN: 0888-3270, 1096-1216
    Vydáno: Elsevier Ltd 15.03.2024
    “…In recent years, researchers have extensively explored the application of drive-by inspection technology for bridge damage assessment. This approach involves…”
    Získat plný text
    Journal Article
  13. 13

    Incorporating Geological Knowledge into Deep Learning to Enhance Geochemical Anomaly Identification Related to Mineralization and Interpretability Autor Zhang, Chunjie, Zuo, Renguang

    ISSN: 1874-8961, 1874-8953
    Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2024
    Vydáno v Mathematical geosciences (01.08.2024)
    “…Effective geochemical anomaly identification is crucial in mineral exploration. Recent trends have favored deep learning (DL) to decipher geochemical survey…”
    Získat plný text
    Journal Article
  14. 14

    Adversarial Autoencoder Based Feature Learning for Fault Detection in Industrial Processes Autor Jang, Kyojin, Hong, Seokyoung, Kim, Minsu, Na, Jonggeol, Moon, Il

    ISSN: 1551-3203, 1941-0050
    Vydáno: Piscataway IEEE 01.02.2022
    “…Deep learning has recently emerged as a promising method for nonlinear process monitoring. However, ensuring that the features from process variables have…”
    Získat plný text
    Journal Article
  15. 15

    DeGAN - Decomposition-based unified anomaly detection in static networks Autor Tüzen, Ahmet, Yaslan, Yusuf

    ISSN: 0020-0255
    Vydáno: Elsevier Inc 01.08.2024
    Vydáno v Information sciences (01.08.2024)
    “…Graph anomaly detection aims to identify anomalous occurrences in networks. However, this is more challenging than the traditional anomaly detection problem…”
    Získat plný text
    Journal Article
  16. 16

    Learning to Generate SAR Images With Adversarial Autoencoder Autor Song, Qian, Xu, Feng, Zhu, Xiao Xiang, Jin, Ya-Qiu

    ISSN: 0196-2892, 1558-0644
    Vydáno: New York IEEE 2022
    “…Deep learning-based synthetic aperture radar (SAR) target recognition often suffers from sparsely distributed training samples and rapid angular variations due…”
    Získat plný text
    Journal Article
  17. 17
  18. 18

    A3N: Attention-based adversarial autoencoder network for detecting anomalies in video sequence Autor Aslam, Nazia, Rai, Prateek Kumar, Kolekar, Maheshkumar H.

    ISSN: 1047-3203, 1095-9076
    Vydáno: Elsevier Inc 01.08.2022
    “…This paper presents a novel attention-based adversarial autoencoder network (A3N) that consists of a two-stream decoder to detect abnormal events in video…”
    Získat plný text
    Journal Article
  19. 19

    Evolutionary Adversarial Autoencoder for Unsupervised Anomaly Detection of Industrial Internet of Things Autor Zeng, Guo-Qiang, Yang, Yao-Wei, Lu, Kang-Di, Geng, Guang-Gang, Weng, Jian

    ISSN: 0018-9529, 1558-1721
    Vydáno: New York IEEE 01.09.2025
    Vydáno v IEEE transactions on reliability (01.09.2025)
    “…The rapid growth of interconnected smart devices and advanced computing technologies in the industrial Internet of Things (IIoT) has significantly enhanced…”
    Získat plný text
    Journal Article
  20. 20

    A new class of fault detection and diagnosis methods by fusion of spatially distributed and time-dependent features Autor Chen, Yan, Zhang, Xiaoyu, Li, Dazi, Zhou, Jinglin

    ISSN: 0959-1524
    Vydáno: Elsevier Ltd 01.02.2025
    Vydáno v Journal of process control (01.02.2025)
    “…Nonlinear, non-Gaussian, and dynamic features pose a great challenge for complex fault detection and fault diagnosis (FDD). Focusing on fault detection,…”
    Získat plný text
    Journal Article