Suchergebnisse - "Variational graph autoencoder"

  1. 1

    Identification of microbe–disease signed associations via multi-scale variational graph autoencoder based on signed message propagation von Zhu, Huan, Hao, Hongxia, Yu, Liang

    ISSN: 1741-7007, 1741-7007
    Veröffentlicht: London BioMed Central 15.08.2024
    Veröffentlicht in BMC biology (15.08.2024)
    “… Background Plenty of clinical and biomedical research has unequivocally highlighted the tremendous significance of the human microbiome in relation to human …”
    Volltext
    Journal Article
  2. 2

    Identifying disease-related microbes based on multi-scale variational graph autoencoder embedding Wasserstein distance von Zhu, Huan, Hao, Hongxia, Yu, Liang

    ISSN: 1741-7007, 1741-7007
    Veröffentlicht: London BioMed Central 20.12.2023
    Veröffentlicht in BMC biology (20.12.2023)
    “… Results In this work, we proposed a novel framework, Multi-scale Variational Graph AutoEncoder embedding Wasserstein distance (MVGAEW …”
    Volltext
    Journal Article
  3. 3

    VGAE-CCI: variational graph autoencoder-based construction of 3D spatial cell–cell communication network von Zhang, Tianjiao, Zhang, Xiang, Wu, Zhenao, Ren, Jixiang, Zhao, Zhongqian, Zhang, Hongfei, Wang, Guohua, Wang, Tao

    ISSN: 1467-5463, 1477-4054, 1477-4054
    Veröffentlicht: England Oxford University Press 22.11.2024
    Veröffentlicht in Briefings in bioinformatics (22.11.2024)
    “… Abstract Cell–cell communication plays a critical role in maintaining normal biological functions, regulating development and differentiation, and controlling …”
    Volltext
    Journal Article
  4. 4

    Importance weighted variational graph autoencoder von Tao, Yuhao, Guo, Lin, Zhao, Shuchang, Zhang, Shiqing

    ISSN: 2199-4536, 2198-6053
    Veröffentlicht: Cham Springer International Publishing 02.12.2025
    Veröffentlicht in Complex & intelligent systems (02.12.2025)
    “… Variational Graph Autoencoder (VGAE) is a widely explored model for learning the distribution of graph data …”
    Volltext
    Journal Article
  5. 5

    Self-Supervised Variational Graph Autoencoder for System-Level Anomaly Detection von Zhang, Le, Cheng, Wei, Xing, Ji, Chen, Xuefeng, Nie, Zelin, Zhang, Shuo, Hong, Junying, Xu, Zhao

    ISSN: 0018-9456, 1557-9662
    Veröffentlicht: New York IEEE 2023
    “… However, most industrial scenarios are without graphs. Hence, a self-supervised variational graph autoencoders (SS-VGAE) method is proposed …”
    Volltext
    Journal Article
  6. 6

    Epitomic Variational Graph Autoencoder von Khan, Rayyan Ahmad, Anwaar, Muhammad Umer, Kleinsteuber, Martin

    Veröffentlicht: IEEE 10.01.2021
    “… As variational graph autoencoder (VGAE) extends VAE for graph-structured data, it inherits the over-pruning problem …”
    Volltext
    Tagungsbericht
  7. 7

    Gene knockout inference with variational graph autoencoder learning single-cell gene regulatory networks von Yang, Yongjian, Li, Guanxun, Zhong, Yan, Xu, Qian, Chen, Bo-Jia, Lin, Yu-Te, Chapkin, Robert S, Cai, James J

    ISSN: 0305-1048, 1362-4962, 1362-4962
    Veröffentlicht: England Oxford University Press 21.07.2023
    Veröffentlicht in Nucleic acids research (21.07.2023)
    “… and scalable framework for gene function studies. To achieve this goal, GenKI adapts a variational graph autoencoder (VGAE …”
    Volltext
    Journal Article
  8. 8

    Predicting Protein-Protein Interactions Using Sequence and Network Information via Variational Graph Autoencoder von Luo, Xin, Wang, Liwei, Hu, Pengwei, Hu, Lun

    ISSN: 1545-5963, 1557-9964, 1557-9964
    Veröffentlicht: United States IEEE 01.09.2023
    “… To overcome this problem, a novel PPI prediction algorithm, namely PASNVGA, is proposed in this work by combining the sequence and network information of proteins via variational graph autoencoder …”
    Volltext
    Journal Article
  9. 9

    Variational graph autoencoder-driven balancing strategy for multimodal multi-objective optimization von Yang, Lei, Zhang, Erlei, Dang, Qianlong

    ISSN: 0020-0255
    Veröffentlicht: Elsevier Inc 01.09.2025
    Veröffentlicht in Information sciences (01.09.2025)
    “… Therefore, this paper proposes a multimodal multi-objective evolutionary algorithm driven by variational graph autoencoder (VGAE …”
    Volltext
    Journal Article
  10. 10

    MAVGAE: a multimodal framework for predicting asymmetric drug-drug interactions based on variational graph autoencoder von Deng, Zengqian, Xu, Jie, Feng, Yinfei, Dong, Liangcheng, Zhang, Yuanyuan

    ISSN: 1025-5842, 1476-8259, 1476-8259
    Veröffentlicht: England Taylor & Francis 19.05.2025
    “… Drug-drug interactions refer to the phenomena wherein the potency, duration, or effectiveness of one or multiple drugs undergo alterations of varying degrees …”
    Volltext
    Journal Article
  11. 11

    VIGA: A variational graph autoencoder model to infer user interest representations for recommendation von Gan, Mingxin, Zhang, Hang

    ISSN: 0020-0255, 1872-6291
    Veröffentlicht: Elsevier Inc 01.09.2023
    Veröffentlicht in Information sciences (01.09.2023)
    “… Learning representations of both user interests and item characteristics is essentially important for recommendation tasks. Although graph neural network-based …”
    Volltext
    Journal Article
  12. 12

    Dual stream fusion link prediction for sparse graph based on variational graph autoencoder and pairwise learning von Li, Xun, Cai, Hongyun, Feng, Chuan, Zhao, Ao

    ISSN: 0306-4573
    Veröffentlicht: Elsevier Ltd 01.05.2025
    Veröffentlicht in Information processing & management (01.05.2025)
    “… To address these issues, this paper proposes a novel link prediction method for sparse graphs based on variational graph autoencoder and pairwise learning …”
    Volltext
    Journal Article
  13. 13

    Camouflaged Variational Graph AutoEncoder Against Attribute Inference Attacks for Cross-Domain Recommendation von Xiong, Yudi, Guo, Yongxin, Pan, Weike, Yang, Qiang, Ming, Zhong, Zhang, Xiaojin, Han, Yu, Lin, Tao, Tang, Xiaoying

    ISSN: 1041-4347, 1558-2191
    Veröffentlicht: IEEE 01.07.2025
    Veröffentlicht in IEEE transactions on knowledge and data engineering (01.07.2025)
    “… Cross-domain recommendation (CDR) aims to alleviate the data sparsity problem by leveraging the benefits of modeling two domains. However, existing research …”
    Volltext
    Journal Article
  14. 14

    Adversarial Attention-Based Variational Graph Autoencoder von Weng, Ziqiang, Zhang, Weiyu, Dou, Wei

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2020
    Veröffentlicht in IEEE access (2020)
    “… graph embedding performance. In this paper, we propose the adversarial attention variational graph autoencoder (AAVGA …”
    Volltext
    Journal Article
  15. 15
  16. 16

    Variational graph autoencoder for reconstructed transcriptomic data associated with NLRP3 mediated pyroptosis in periodontitis von Yadalam, Pradeep K., Natarajan, Prabhu Manickam, Ardila, Carlos M.

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 14.01.2025
    Veröffentlicht in Scientific reports (14.01.2025)
    “… This study evaluates the efficacy of Variational Graph Autoencoders (VGAEs) in reconstructing gene data related to NLRP3-mediated pyroptosis in periodontitis …”
    Volltext
    Journal Article
  17. 17

    MODAPro: Explainable Heterogeneous Networks with Variational Graph Autoencoder for Mining Disease-Specific Functional Molecules and Pathways from Omics Data von Zhao, Jinhui, He, Jiarui, Guan, Pengwei, Bao, Han, Zhao, Xinjie, Zhao, Chunxia, Qin, Wangshu, Lu, Xin, Xu, Guowang

    ISSN: 1520-6882, 1520-6882
    Veröffentlicht: United States 28.10.2025
    Veröffentlicht in Analytical chemistry (Washington) (28.10.2025)
    “… To address these critical limitations, we introduce MODAPro, a biologically informed deep learning framework that synergistically integrates variational graph autoencoders (VAE …”
    Weitere Angaben
    Journal Article
  18. 18

    Optimizing Variational Graph Autoencoder for Community Detection with Dual Optimization von Choong, Jun Jin, Liu, Xin, Murata, Tsuyoshi

    ISSN: 1099-4300, 1099-4300
    Veröffentlicht: MDPI 01.02.2020
    Veröffentlicht in Entropy (Basel, Switzerland) (01.02.2020)
    “… Variational Graph Autoencoder (VGAE) has recently gained traction for learning representations on graphs …”
    Volltext
    Journal Article
  19. 19

    A Variational Graph Autoencoder Aided Canonical Correlation Analysis-Based Online Abnormal Patterns Detection Method for Buildings HVAC Systems von Pan, Xiaogang, Deng, Qiao, Jiao, Yuanyuan, Chen, Zhiwen

    ISSN: 0098-3063, 1558-4127
    Veröffentlicht: New York IEEE 01.05.2025
    Veröffentlicht in IEEE transactions on consumer electronics (01.05.2025)
    “… Heating, Ventilation, and Air Conditioning (HVAC) systems have become essential components of contemporary life, extensively employed in commercial and …”
    Volltext
    Journal Article
  20. 20

    A ^VGAE: An Attribute-Augmented Adversarial Variational Graph Autoencoder for Link Prediction von Pan, Zhihong, Zhong, Zhijie, Wei, Lingling, Lin, Yunxuan, Li, Weisheng, Lin, Ronghua, Tang, Yong

    ISSN: 2329-924X, 2373-7476
    Veröffentlicht: IEEE 16.06.2025
    Veröffentlicht in IEEE transactions on computational social systems (16.06.2025)
    “… variational graph autoencoder (A<inline-formula><tex-math notation="LaTeX">{}^{3}</tex-math></inline-formula>VGAE), which can effectively solve the above two problems …”
    Volltext
    Journal Article