Suchergebnisse - "Variational Graph Autoencoders"
-
1
VIGA: A variational graph autoencoder model to infer user interest representations for recommendation
ISSN: 0020-0255, 1872-6291Veröffentlicht: Elsevier Inc 01.09.2023Veröffentlicht in Information sciences (01.09.2023)“… Learning representations of both user interests and item characteristics is essentially important for recommendation tasks. Although graph neural network-based …”
Volltext
Journal Article -
2
An Edge Feature Inclusive Variational Graph Autoencoder for Pet-Driven Alzheimer's Diagnosis
ISSN: 2154-512XVeröffentlicht: IEEE 13.10.2025Veröffentlicht in International Workshops on Image Processing Theory, Tools, and Applications (13.10.2025)“… We propose GINEVGAE(Modified Graph Isomorphism Network with Variational Graph Autoencoder, a novel variational graph autoencoder that leverages GINEConv …”
Volltext
Tagungsbericht -
3
A Variational Graph Autoencoder for Manipulation Action Recognition and Prediction
Veröffentlicht: IEEE 06.12.2021Veröffentlicht in 2021 20th International Conference on Advanced Robotics (ICAR) (06.12.2021)“… Despite decades of research, understanding human manipulation activities is, and has always been, one of the most attractive and challenging research topics in …”
Volltext
Tagungsbericht -
4
A Variational Graph Autoencoder for Manipulation Action Recognition and Prediction
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 25.10.2021Veröffentlicht in arXiv.org (25.10.2021)“… Despite decades of research, understanding human manipulation activities is, and has always been, one of the most attractive and challenging research topics in …”
Volltext
Paper -
5
On the Power of Edge Independent Graph Models
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 29.10.2021Veröffentlicht in arXiv.org (29.10.2021)“… Such models include both the classic Erd\"{o}s-R\'{e}nyi and stochastic block models, as well as modern generative models such as NetGAN, variational graph autoencoders, and CELL …”
Volltext
Paper -
6
Predicting potential drug targets and repurposable drugs for COVID-19 via a deep generative model for graphs
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 05.07.2020Veröffentlicht in arXiv.org (05.07.2020)“… Coronavirus Disease 2019 (COVID-19) has been creating a worldwide pandemic situation. Repurposing drugs, already shown to be free of harmful side effects, for …”
Volltext
Paper