Suchergebnisse - "Variational Graph Autoencoders"

  • Treffer 1 - 6 von 6
Treffer weiter einschränken
  1. 1

    VIGA: A variational graph autoencoder model to infer user interest representations for recommendation von Gan, Mingxin, Zhang, Hang

    ISSN: 0020-0255, 1872-6291
    Veröffentlicht: Elsevier Inc 01.09.2023
    Veröffentlicht in Information sciences (01.09.2023)
    “… Learning representations of both user interests and item characteristics is essentially important for recommendation tasks. Although graph neural network-based …”
    Volltext
    Journal Article
  2. 2

    An Edge Feature Inclusive Variational Graph Autoencoder for Pet-Driven Alzheimer's Diagnosis von Gurbuz, Saruhan Mete, Adel, Mouloud

    ISSN: 2154-512X
    Veröffentlicht: IEEE 13.10.2025
    “… We propose GINEVGAE(Modified Graph Isomorphism Network with Variational Graph Autoencoder, a novel variational graph autoencoder that leverages GINEConv …”
    Volltext
    Tagungsbericht
  3. 3

    A Variational Graph Autoencoder for Manipulation Action Recognition and Prediction von Akyol, Gamze, Sariel, Sanem, Aksoy, Eren Erdal

    Veröffentlicht: IEEE 06.12.2021
    “… Despite decades of research, understanding human manipulation activities is, and has always been, one of the most attractive and challenging research topics in …”
    Volltext
    Tagungsbericht
  4. 4

    A Variational Graph Autoencoder for Manipulation Action Recognition and Prediction von Akyol, Gamze, Sariel, Sanem, Eren Erdal Aksoy

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 25.10.2021
    Veröffentlicht in arXiv.org (25.10.2021)
    “… Despite decades of research, understanding human manipulation activities is, and has always been, one of the most attractive and challenging research topics in …”
    Volltext
    Paper
  5. 5

    On the Power of Edge Independent Graph Models von Chanpuriya, Sudhanshu, Musco, Cameron, Sotiropoulos, Konstantinos, Tsourakakis, Charalampos E

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 29.10.2021
    Veröffentlicht in arXiv.org (29.10.2021)
    “… Such models include both the classic Erd\"{o}s-R\'{e}nyi and stochastic block models, as well as modern generative models such as NetGAN, variational graph autoencoders, and CELL …”
    Volltext
    Paper
  6. 6

    Predicting potential drug targets and repurposable drugs for COVID-19 via a deep generative model for graphs von Ray, Sumanta, Lall, Snehalika, Mukhopadhyay, Anirban, Bandyopadhyay, Sanghamitra, Schönhuth, Alexander

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 05.07.2020
    Veröffentlicht in arXiv.org (05.07.2020)
    “… Coronavirus Disease 2019 (COVID-19) has been creating a worldwide pandemic situation. Repurposing drugs, already shown to be free of harmful side effects, for …”
    Volltext
    Paper