Suchergebnisse - "Variational AutoEncoder"

  1. 1

    Crafting imperceptible on-manifold adversarial attacks for tabular data von He, Zhipeng, Stevens, Alexander, Ouyang, Chun, De Smedt, Johannes, Barros, Alistair, Moreira, Catarina

    ISSN: 1568-4946
    Veröffentlicht: Elsevier B.V 01.01.2026
    Veröffentlicht in Applied soft computing (01.01.2026)
    “… Adversarial attacks on tabular data present unique challenges due to the heterogeneous nature of mixed categorical and numerical features. Unlike images where …”
    Volltext
    Journal Article
  2. 2

    Anomaly detection for multivariate times series through the multi-scale convolutional recurrent variational autoencoder von Xie, Tianming, Xu, Qifa, Jiang, Cuixia

    ISSN: 0957-4174, 1873-6793
    Veröffentlicht: Elsevier Ltd 30.11.2023
    Veröffentlicht in Expert systems with applications (30.11.2023)
    “… To realize the anomaly detection for industrial multi-sensor data, we develop a novel multi-scale convolutional recurrent variational autoencoder (MSCRVAE) …”
    Volltext
    Journal Article
  3. 3

    Robust Semantic Communications with Masked VQ-VAE Enabled Codebook von Hu, Qiyu, Zhang, Guangyi, Qin, Zhijin, Cai, Yunlong, Yu, Guanding, Li, Geoffrey Ye

    ISSN: 1536-1276, 1558-2248
    Veröffentlicht: New York IEEE 01.12.2023
    Veröffentlicht in IEEE transactions on wireless communications (01.12.2023)
    “… Although semantic communications have exhibited satisfactory performance on a large number of tasks, the impact of semantic noise and the robustness of the …”
    Volltext
    Journal Article
  4. 4

    VAE-based Deep SVDD for anomaly detection von Zhou, Yu, Liang, Xiaomin, Zhang, Wei, Zhang, Linrang, Song, Xing

    ISSN: 0925-2312, 1872-8286
    Veröffentlicht: Elsevier B.V 17.09.2021
    Veröffentlicht in Neurocomputing (Amsterdam) (17.09.2021)
    “… Anomaly detection is an essential task for different fields in the real world. The imbalanced data and lack of labels make the task challenging. Deep learning …”
    Volltext
    Journal Article
  5. 5

    Recognition of geochemical anomalies using a deep variational autoencoder network von Luo, Zijing, Xiong, Yihui, Zuo, Renguang

    ISSN: 0883-2927, 1872-9134
    Veröffentlicht: Elsevier Ltd 01.11.2020
    Veröffentlicht in Applied geochemistry (01.11.2020)
    “… Deep learning (DL) algorithms have received increased attention in various fields. In the field of geoscience, DL has been shown to be a powerful tool for …”
    Volltext
    Journal Article
  6. 6

    Intrusion Detection System After Data Augmentation Schemes Based on the VAE and CVAE von Liu, Chang, Antypenko, Ruslan, Sushko, Iryna, Zakharchenko, Oksana

    ISSN: 0018-9529, 1558-1721
    Veröffentlicht: New York IEEE 01.06.2022
    Veröffentlicht in IEEE transactions on reliability (01.06.2022)
    “… Industrial Internet of Things (IoT) is the most rapidly developing industry in the current IoT industry, and the intrusion detection system (IDS) remains one …”
    Volltext
    Journal Article
  7. 7

    Discriminative Hamiltonian variational autoencoder for accurate tumor segmentation in data-scarce regimes von Kebaili, Aghiles, Lapuyade-Lahorgue, Jérôme, Vera, Pierre, Ruan, Su

    ISSN: 0925-2312
    Veröffentlicht: Elsevier B.V 14.11.2024
    Veröffentlicht in Neurocomputing (Amsterdam) (14.11.2024)
    “… Deep learning has gained significant attention in medical image segmentation. However, the limited availability of annotated training data presents a challenge …”
    Volltext
    Journal Article
  8. 8

    Spectrum-compatible artificial accelerograms via conditional variational autoencoder with generative adversarial networks von Hu, Xiaohu, Chen, Su, Ding, Yi, Fu, Lei, Li, Xiaojun

    ISSN: 0141-0296
    Veröffentlicht: Elsevier Ltd 01.02.2026
    Veröffentlicht in Engineering structures (01.02.2026)
    “… The need for spectrum-compatible ground motions in structural seismic design has driven the development of artificial seismic waveform generation techniques …”
    Volltext
    Journal Article
  9. 9

    Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study von Zeroual, Abdelhafid, Harrou, Fouzi, Dairi, Abdelkader, Sun, Ying

    ISSN: 0960-0779, 1873-2887, 0960-0779
    Veröffentlicht: England Elsevier Ltd 01.11.2020
    Veröffentlicht in Chaos, solitons and fractals (01.11.2020)
    “… •Developed deep learning methods to forecast the COVID19 spread.•Five deep learning models have been compared for COVID-19 forecasting.•Time-series COVID19 …”
    Volltext
    Journal Article
  10. 10

    Deep Clustering Analysis via Dual Variational Autoencoder With Spherical Latent Embeddings von Yang, Lin, Fan, Wentao, Bouguila, Nizar

    ISSN: 2162-237X, 2162-2388, 2162-2388
    Veröffentlicht: United States IEEE 01.09.2023
    “… In recent years, clustering methods based on deep generative models have received great attention in various unsupervised applications, due to their …”
    Volltext
    Journal Article
  11. 11

    Intelligent Condition-Based Monitoring of Rotary Machines With Few Samples von Dixit, Sonal, Verma, Nishchal K.

    ISSN: 1530-437X, 1558-1748
    Veröffentlicht: New York IEEE 01.12.2020
    Veröffentlicht in IEEE sensors journal (01.12.2020)
    “… Recently, intelligent condition based monitoring systems build on deep learning methods have gained popularity. The success of these methods relies upon the …”
    Volltext
    Journal Article
  12. 12
  13. 13

    Cloud-VAE: Variational autoencoder with concepts embedded von Liu, Yue, Liu, Zitu, Li, Shuang, Yu, Zhenyao, Guo, Yike, Liu, Qun, Wang, Guoyin

    ISSN: 0031-3203, 1873-5142
    Veröffentlicht: Elsevier Ltd 01.08.2023
    Veröffentlicht in Pattern recognition (01.08.2023)
    “… •The initial concepts in latent space are described as prior distribution obtained by the proposed cloud model-based clustering algorithm.•Variational lower …”
    Volltext
    Journal Article
  14. 14

    Uncertainty-aware probabilistic travel demand prediction for mobility-on-demand services von Peng, Tao, Gao, Jie, Cats, Oded

    ISSN: 0968-090X
    Veröffentlicht: Elsevier Ltd 01.12.2025
    “… •Spatial-temporal deep learning framework for probabilistic MoD demand prediction.•Nonparametric approach for uncertainty quantification in travel demand …”
    Volltext
    Journal Article
  15. 15

    A review of molecular representation in the age of machine learning von Wigh, Daniel S., Goodman, Jonathan M., Lapkin, Alexei A.

    ISSN: 1759-0876, 1759-0884
    Veröffentlicht: Hoboken, USA Wiley Periodicals, Inc 01.09.2022
    “… Research in chemistry increasingly requires interdisciplinary work prompted by, among other things, advances in computing, machine learning, and artificial …”
    Volltext
    Journal Article
  16. 16

    A generative design method of airfoil based on conditional variational autoencoder von Wang, Xu, Qian, Weiqi, Zhao, Tun, Chen, Hai, He, Lei, Sun, Haisheng, Tian, Yuan

    ISSN: 0952-1976
    Veröffentlicht: Elsevier Ltd 01.01.2025
    Veröffentlicht in Engineering applications of artificial intelligence (01.01.2025)
    “… The challenges in multi-objective and multi-dimensional optimization design of airfoils, marked by prolonged optimization cycles and low accuracy, call for an …”
    Volltext
    Journal Article
  17. 17

    Hyperbolic Adversarial Variational Embedding for item recommendation von Sun, Zhongchuan, Chen, Liming, Wang, Youwei, Zhang, Mingming, Wu, Yunpeng, Ye, Yangdong

    ISSN: 0952-1976
    Veröffentlicht: Elsevier Ltd 15.01.2026
    Veröffentlicht in Engineering applications of artificial intelligence (15.01.2026)
    “… Variational autoencoders (VAEs) have shown great promise in recommender systems due to their advantage of handling implicit feedback. However, existing …”
    Volltext
    Journal Article
  18. 18

    DiffuseVAE++: Mitigating training-sampling mismatch based on additional noise for higher fidelity image generation von Yang, Xiaobao, Luo, Wei, Ning, Hailong, Zhang, Guorui, Sun, Wei, Ma, Sugang

    ISSN: 0925-2312
    Veröffentlicht: Elsevier B.V 07.06.2025
    Veröffentlicht in Neurocomputing (Amsterdam) (07.06.2025)
    “… Denoising Diffusion Probabilistic Models (DDPMs) have demonstrated remarkable results in image generation. However, there exist a mismatch between the training …”
    Volltext
    Journal Article
  19. 19

    PFEMed: Few-shot medical image classification using prior guided feature enhancement von Dai, Zhiyong, Yi, Jianjun, Yan, Lei, Xu, Qingwen, Hu, Liang, Zhang, Qi, Li, Jiahui, Wang, Guoqiang

    ISSN: 0031-3203, 1873-5142
    Veröffentlicht: Elsevier Ltd 01.02.2023
    Veröffentlicht in Pattern recognition (01.02.2023)
    “… •A novel dual-encoder architecture is introduced to extract feature representation.•To our knowledge, we are the first to investigate the proposed VAE …”
    Volltext
    Journal Article
  20. 20

    Joint Coding-Modulation for Digital Semantic Communications via Variational Autoencoder von Bo, Yufei, Duan, Yiheng, Shao, Shuo, Tao, Meixia

    ISSN: 0090-6778, 1558-0857
    Veröffentlicht: New York IEEE 01.09.2024
    Veröffentlicht in IEEE transactions on communications (01.09.2024)
    “… Semantic communications have emerged as a new paradigm for improving communication efficiency by transmitting the semantic information of a source message that …”
    Volltext
    Journal Article