Suchergebnisse - "Supervised variational autoencoder"

  1. 1

    A Supervised Variational Autoencoder for Incomplete Multi‐View Classification von Xu, Yi, Chen, Anchi

    ISSN: 0266-4720, 1468-0394
    Veröffentlicht: 01.01.2026
    Veröffentlicht in Expert systems (01.01.2026)
    “… Although significant progress has been made in multi‐view classification over the past few decades, handling multi‐view data with arbitrary view missing is …”
    Volltext
    Journal Article
  2. 2
  3. 3

    Noise-Aware Self-Supervised Variational Autoencoder for Speech Enhancement von Dixit, Amogh, Nataraj, K. S., Tiwari, Nitya

    ISSN: 0278-081X, 1531-5878
    Veröffentlicht: New York Springer US 01.07.2025
    Veröffentlicht in Circuits, systems, and signal processing (01.07.2025)
    “… To address this, we propose a Noise-Aware Self-Supervised Variational Autoencoder (NASS-VAE) framework, designed to improve speech enhancement without the need for paired clean and noisy data …”
    Volltext
    Journal Article
  4. 4

    Self-supervised Variational Autoencoder for Unsupervised Object Counting from Very High-Resolution Satellite Imagery: Applications in Dwelling Extraction in FDP Settlement Areas von Gella, Getachew Workineh, Gangloff, Hugo, Wendt, Lorenz, Tiede, Dirk, Lang, Stefan

    ISSN: 0196-2892, 1558-0644
    Veröffentlicht: New York IEEE 01.01.2024
    Veröffentlicht in IEEE transactions on geoscience and remote sensing (01.01.2024)
    “… In supervised learning, deep learning models demand a large corpus of annotated data for object detection and classification tasks. This constrains their …”
    Volltext
    Journal Article
  5. 5

    Efficient few-shot medical image segmentation via self-supervised variational autoencoder von Zhou, Yanjie, Zhou, Feng, Xi, Fengjun, Liu, Yong, Peng, Yun, Carlson, David E., Tu, Liyun

    ISSN: 1361-8415, 1361-8423, 1361-8423
    Veröffentlicht: Netherlands Elsevier B.V 01.08.2025
    Veröffentlicht in Medical image analysis (01.08.2025)
    “… Few-shot medical image segmentation typically uses a joint model for registration and segmentation. The registration model aligns a labeled atlas with …”
    Volltext
    Journal Article
  6. 6

    Self-supervised variational autoencoder towards recommendation by nested contrastive learning von Wang, Jing, Wu, Jun, Jia, Caiyan, Zhang, Zhifei

    ISSN: 0924-669X, 1573-7497
    Veröffentlicht: New York Springer US 01.08.2023
    Veröffentlicht in Applied intelligence (Dordrecht, Netherlands) (01.08.2023)
    “… ,as user’s preference may be highly complex. In this paper, we propose a Nested Self-supervised Variational Autoencoder (NSVAE …”
    Volltext
    Journal Article
  7. 7

    Early Detection and Diagnosis of Wind Turbine Abnormal Conditions Using an Interpretable Supervised Variational Autoencoder Model von Oliveira-Filho, Adaiton, Zemouri, Ryad, Cambron, Philippe, Tahan, Antoine

    ISSN: 1996-1073, 1996-1073
    Veröffentlicht: Basel MDPI AG 01.06.2023
    Veröffentlicht in Energies (Basel) (01.06.2023)
    “… The operation and maintenance of wind turbines benefit from reliable information on the wind turbine condition. Data-driven models use data from the …”
    Volltext
    Journal Article
  8. 8

    A mechanical fault diagnosis model with semi-supervised variational autoencoder based on long short-term memory network von Qu, Yuanyuan, Li, Tao, Fu, Shichen, Wang, Zhisheng, Chen, Jian, Zhang, Yupeng

    ISSN: 0924-090X, 1573-269X
    Veröffentlicht: Dordrecht Springer Netherlands 01.01.2025
    Veröffentlicht in Nonlinear dynamics (01.01.2025)
    “… A mechanical fault diagnosis model with Semi-Supervised Variational Autoencoder based on Long Short-Term Memory network (LSTM-SSVAE …”
    Volltext
    Journal Article
  9. 9

    Developing semi-supervised variational autoencoder-generative adversarial network models to enhance quality prediction performance von Ooi, Sai Kit, Tanny, Dave, Chen, Junghui, Wang, Kai

    ISSN: 0169-7439, 1873-3239
    Veröffentlicht: Elsevier B.V 15.10.2021
    Veröffentlicht in Chemometrics and intelligent laboratory systems (15.10.2021)
    “… Such discrepancy exists because of the time lag for obtaining quality data. This paper proposes semi-supervised variational autoencoder-generative adversarial network (S2-VAE/GAN …”
    Volltext
    Journal Article
  10. 10

    Semi-supervised Variational Autoencoder for WiFi Indoor Localization von Chidlovskii, Boris, Antsfeld, Leonid

    ISSN: 2471-917X
    Veröffentlicht: IEEE 01.09.2019
    “… We address the problem of indoor localization based on WiFi signal strengths. We develop a semi-supervised deep learning method able to train a prediction …”
    Volltext
    Tagungsbericht
  11. 11

    A supervised variational autoencoder framework for dimensionality reduction and predictive modeling in high-dimensional socioeconomic data von Xue, Pei, Li, Tianshun

    ISSN: 2949-9488, 2949-9488
    Veröffentlicht: Elsevier B.V 2026
    Veröffentlicht in Journal of Economy and Technology (2026)
    “… We introduce an estimation framework utilizing a Supervised Variational Autoencoder (SVAE …”
    Volltext
    Journal Article
  12. 12

    Semi-Supervised Variational Autoencoder for Cell Feature Extraction In Multiplexed Immunofluorescence Images von Sandarenu, Piumi, Chen, Julia, Slapetova, Iveta, Browne, Lois, Graham, Peter H., Swarbrick, Alexander, Millar, Ewan K.A., Song, Yang, Meijering, Erik

    ISSN: 1945-8452
    Veröffentlicht: IEEE 27.05.2024
    “… Advancements in digital imaging technologies have sparked increased interest in using multiplexed immunofluorescence (mIF) images to visualise and identify the …”
    Volltext
    Tagungsbericht
  13. 13

    Spatial and temporal downscaling schemes to reconstruct high-resolution GRACE data: A case study in the Tarim River Basin, Northwest China von Xue, Dongping, Gui, Dongwei, Ci, Mengtao, Liu, Qi, Wei, Guanghui, Liu, Yunfei

    ISSN: 0048-9697, 1879-1026, 1879-1026
    Veröffentlicht: Elsevier B.V 10.01.2024
    Veröffentlicht in The Science of the total environment (10.01.2024)
    “… of GRACE data effectively. In this study, we employ the semi-supervised variational autoencoder (SSVAER …”
    Volltext
    Journal Article
  14. 14

    Adversarial Attack Type I: Cheat Classifiers by Significant Changes von Tang, Sanli, Huang, Xiaolin, Chen, Mingjian, Sun, Chengjin, Yang, Jie

    ISSN: 0162-8828, 1939-3539, 2160-9292, 1939-3539
    Veröffentlicht: United States IEEE 01.03.2021
    “… Despite the great success of deep neural networks, the adversarial attack can cheat some well-trained classifiers by small permutations. In this paper, we …”
    Volltext
    Journal Article
  15. 15

    Self-supervised Variational Autoencoder for Recommender Systems von Wang, Jing, Liu, Gangdu, Wu, Jun, Jia, Caiyan, Zhang, Zhifei

    ISSN: 2375-0197
    Veröffentlicht: IEEE 01.11.2021
    “… Variational autoencoder (VAE) is considered as an emerging model for ensuring competitive performance in recom-mender systems. However, its performance is …”
    Volltext
    Tagungsbericht
  16. 16
  17. 17

    A Semi-Supervised Variational Autoencoder for Fault Detection of Low-Severity Inter-Turn Short-Circuit in PMSMs von Zhu, Mingda, Nguyen, Du, Han, Peihua, Huynh, Khang, Zhou, Jing

    ISSN: 2380-856X
    Veröffentlicht: IEEE 09.04.2025
    “… This study proposes a semi-supervised Variational Autoencoder (VAE) with Long Short-Term Memory Networks for fault detection …”
    Volltext
    Tagungsbericht
  18. 18

    Adversarial Training-Based Deep Layer-Wise Probabilistic Network for Enhancing Soft Sensor Modeling of Industrial Processes von Xie, Yongfang, Wang, Jie, Xie, Shiwen, Chen, Xiaofang

    ISSN: 2168-2216, 2168-2232
    Veröffentlicht: New York IEEE 01.02.2024
    “… In this article, an adversarial training-based deep supervised variational autoencoder (Adv-DSVAE) is proposed to enhance the performance of industrial soft sensor models …”
    Volltext
    Journal Article
  19. 19

    Semi-Supervised Variational Autoencoder for Survival Prediction von Pálsson, Sveinn, Cerri, Stefano, Dittadi, Andrea, Koen Van Leemput

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 10.10.2019
    Veröffentlicht in arXiv.org (10.10.2019)
    “… In this paper we propose a semi-supervised variational autoencoder for classification of overall survival groups from tumor segmentation masks …”
    Volltext
    Paper
  20. 20

    Semi-supervised Variational Autoencoder for Regression: Application on Soft Sensors von Zhuang, Yilin, Zhou, Zhuobin, Alakent, Burak, Mercangöz, Mehmet

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 09.12.2022
    Veröffentlicht in arXiv.org (09.12.2022)
    “… We present the development of a semi-supervised regression method using variational autoencoders (VAE), which is customized for use in soft sensing …”
    Volltext
    Paper