Suchergebnisse - "Stacked autoencoder"

  1. 1

    Optimizing sEMG Gesture Recognition with Stacked Autoencoder Neural Network for Bionic Hand von Yadav, Mr. Amol Pandurang, Patil, Dr. Sandip.R.

    ISSN: 2215-0161, 2215-0161
    Veröffentlicht: Netherlands Elsevier B.V 01.06.2025
    Veröffentlicht in MethodsX (01.06.2025)
    “… This study presents a novel deep learning approach for surface electromyography (sEMG) gesture recognition using stacked autoencoder neural network …”
    Volltext
    Journal Article
  2. 2

    A multi‐feature space constrained stacked autoencoder and its application for uncertain process monitoring von Yang, Jiandong, Wang, Chenhao, Yu, Jianbo, Yan, Xuefeng

    ISSN: 0008-4034, 1939-019X
    Veröffentlicht: 07.10.2025
    Veröffentlicht in Canadian journal of chemical engineering (07.10.2025)
    “… To mitigate these issues, we propose a novel process monitoring method based on a multi‐feature space constrained stacked autoencoder (MFSCSAE …”
    Volltext
    Journal Article
  3. 3

    Denoising magnetic resonance spectroscopy (MRS) data using stacked autoencoder for improving signal‐to‐noise ratio and speed of MRS von Wang, Jing, Ji, Bing, Lei, Yang, Liu, Tian, Mao, Hui, Yang, Xiaofeng

    ISSN: 0094-2405, 2473-4209, 2473-4209
    Veröffentlicht: United States 01.12.2023
    Veröffentlicht in Medical physics (Lancaster) (01.12.2023)
    “… Background While magnetic resonance imaging (MRI) provides high resolution anatomical images with sharp soft tissue contrast, magnetic resonance spectroscopy …”
    Volltext
    Journal Article
  4. 4

    Multi-DoF continuous estimation for wrist torques using stacked autoencoder von Yu, Yang, Chen, Chen, Sheng, Xinjun, Zhu, Xiangyang

    ISSN: 1746-8094, 1746-8108
    Veröffentlicht: Elsevier Ltd 01.03.2020
    Veröffentlicht in Biomedical signal processing and control (01.03.2020)
    “… In this study, we construct a stacked autoencoder-based deep neural network (SAE-DNN) to continuously estimate multiple degrees-of-freedom (DoFs …”
    Volltext
    Journal Article
  5. 5

    A decision support system based on multi-sources information to predict piRNA–disease associations using stacked autoencoder von Zheng, Kai, Liang, Ying, Liu, Yue-Ying, Yasir, Muhammad, Wang, Ping

    ISSN: 1432-7643, 1433-7479
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2022
    Veröffentlicht in Soft computing (Berlin, Germany) (01.10.2022)
    “… In this study, we proposed a new computational model based on multi-source information and stacked autoencoder, called MSRDA, to predict potential piRNA …”
    Volltext
    Journal Article
  6. 6

    Stacked autoencoder with novel integrated activation functions for the diagnosis of autism spectrum disorder von M, Kaviya Elakkiya, Dejey

    ISSN: 0941-0643, 1433-3058
    Veröffentlicht: London Springer London 01.08.2023
    Veröffentlicht in Neural computing & applications (01.08.2023)
    “… ) of autism screening. In the proposed work, two novel integrated activation functions such as Li-ReLU and S-RReLU are developed to aid in the classification of autistic subjects and typical controls (TC …”
    Volltext
    Journal Article
  7. 7

    Classification of autistic subjects employing modified volume local binary pattern (MVLBP) and stacked Autoencoder (SAE) on functional magnetic resonance imaging (fMRI) von M., Kaviya Elakkiya, Dejey

    ISSN: 1573-7721, 1380-7501, 1573-7721
    Veröffentlicht: New York Springer US 01.06.2025
    Veröffentlicht in Multimedia tools and applications (01.06.2025)
    “… The object of the proposed research is to automatically classify autistic subjects utilizing fMRI with high degree of accuracy …”
    Volltext
    Journal Article
  8. 8

    Comparing Functional and Effective Connectivity Features in Diagnosis of Autism Spectrum Disorder Using Stacked Autoencoder by Resting-State fMRI Data von Navaei, Pegah, Khadem, Ali, Zaferani, Effat Jalaeian

    ISSN: 2345-5837, 2345-5837
    Veröffentlicht: Tehran University of Medical Sciences 04.10.2025
    Veröffentlicht in Frontiers in biomedical technologies (04.10.2025)
    “… ) obtained from resting-state functional Magnetic Resonance Imaging (rs-fMRI) data and stacked autoencoder for diagnosing Autism Spectrum Disorder (ASD …”
    Volltext
    Journal Article
  9. 9

    Classification of Silent Speech in English and Bengali Languages Using Stacked Autoencoder von Ghosh, Rajdeep, Sinha, Nidul, Phadikar, Souvik

    ISSN: 2661-8907, 2662-995X, 2661-8907
    Veröffentlicht: Singapore Springer Nature Singapore 22.07.2022
    Veröffentlicht in SN computer science (22.07.2022)
    “… The purpose of a brain–computer interface (BCI) is to enhance or support the normal functions of disabled people, and as such, BCIs have been utilized for a …”
    Volltext
    Journal Article
  10. 10

    A Home Sleep Apnea State Monitoring System using a Stacked Autoencoder von Takao, Ikuya, Nishio, Keita, Kaburagi, Takashi, Kumagai, Satoshi, Matsumoto, Toshiyuki, Kurihara, Yosuke

    ISSN: 2168-9229
    Veröffentlicht: IEEE 01.10.2019
    Veröffentlicht in Proceedings of IEEE Sensors ... (01.10.2019)
    “… To reduce the effects from each individual user and their sleeping position, we applied a stacked autoencoder to obtain feature vectors …”
    Volltext
    Tagungsbericht
  11. 11

    Dynamic historical information incorporated attention deep learning model for industrial soft sensor modeling von Wang, Yalin, Liu, Diju, Liu, Chenliang, Yuan, Xiaofeng, Wang, Kai, Yang, Chunhua

    ISSN: 1474-0346, 1873-5320
    Veröffentlicht: Elsevier Ltd 01.04.2022
    Veröffentlicht in Advanced engineering informatics (01.04.2022)
    “… To combat this issue, a novel attention-based dynamic stacked autoencoder networks (AD-SAE) for soft sensor modeling is proposed in this paper …”
    Volltext
    Journal Article
  12. 12

    An integrated deep learning model for motor intention recognition of multi-class EEG Signals in upper limb amputees von Idowu, Oluwagbenga Paul, Ilesanmi, Ademola Enitan, Li, Xiangxin, Samuel, Oluwarotimi Williams, Fang, Peng, Li, Guanglin

    ISSN: 0169-2607, 1872-7565, 1872-7565
    Veröffentlicht: Ireland Elsevier B.V 01.07.2021
    Veröffentlicht in Computer methods and programs in biomedicine (01.07.2021)
    “… •Proposed an integrated deep learning model for recognition of multiple classes of motor intention tasks from raw EEG signals acquired from trans-humeral …”
    Volltext
    Journal Article
  13. 13

    Improving Performance of Devanagari Script Input-Based P300 Speller Using Deep Learning von Kshirsagar, G. B., Londhe, N. D.

    ISSN: 0018-9294, 1558-2531, 1558-2531
    Veröffentlicht: United States IEEE 01.11.2019
    Veröffentlicht in IEEE transactions on biomedical engineering (01.11.2019)
    “… For this, two proven deep learning algorithms, stacked autoencoder (SAE) and deep …”
    Volltext
    Journal Article
  14. 14

    Learning deep multi-manifold structure feature representation for quality prediction with an industrial application von Liu, Chenliang, Wang, Kai, Wang, Yalin, Yuan, Xiaofeng

    ISSN: 1551-3203
    Veröffentlicht: IEEE 23.11.2021
    Veröffentlicht in IEEE transactions on industrial informatics (23.11.2021)
    “… subject to different distributions, which means there exist different manifold structures under broad operations …”
    Volltext
    Journal Article
  15. 15

    Evaluation of LSTM for predicting grip strength using electromyography: a comparison of setups and methods von Anam, Khairul, Sudrajat, Ahmad, Rizal, Naufal Ainur, Intyanto, Gramandha Wega, Muldayani, Wahyu, Negara, Mohamad Agung Prawira, Sumardi, Bukhori, Saiful, Gitakarma, Made Santo, Castellini, Claudio

    ISSN: 0941-0643, 1433-3058
    Veröffentlicht: London Springer London 01.07.2025
    Veröffentlicht in Neural computing & applications (01.07.2025)
    “… In particular, we compare long short-term memory (LSTM), together with a stacked autoencoder (LSTM–SAE) and an attention mechanism …”
    Volltext
    Journal Article
  16. 16

    Electroencephalograph-Based Hand Movement Pattern Recognition for Prosthetic Robot Control Using a Combination of Long Short-Term Memory and Stacked Autoencoder Methods von Hana Sasono, Muchamad Arif, Akbar, Afgan Satrio, Fatoni, Moch. Rijal, Nanda Imron, Arizal Mujibtamala, Anam, Khairul

    Veröffentlicht: IEEE 19.11.2024
    “… ) and Stacked Autoencoder (SAE) architecture based on EEG signals. Offline tests were conducted by adjusting various parameters on LSTM and SAE, achieving an average accuracy of 99.89 …”
    Volltext
    Tagungsbericht
  17. 17

    The research of sleep staging based on single-lead electrocardiogram and deep neural network von Wei, Ran, Zhang, Xinghua, Wang, Jinhai, Dang, Xin

    ISSN: 2093-9868, 2093-985X, 2093-985X
    Veröffentlicht: Korea The Korean Society of Medical and Biological Engineering 01.02.2018
    Veröffentlicht in Biomedical engineering letters (01.02.2018)
    “… ), rapid-eye-movement (REM) and non-rapid-eye-movement (NREM) sleep stage. We apply the sleep stage stacked autoencoder to constitute a 4-layer DNN …”
    Volltext
    Journal Article
  18. 18

    Denoising Magnetic Resonance Spectroscopy (MRS) Data Using Stacked Autoencoder for Improving Signal-to-Noise Ratio and Speed of MRS von Wang, Jing, Ji, Bing, Lei, Yang, Liu, Tian, Mao, Hui, Yang, Xiaofeng

    ISSN: 2331-8422, 2331-8422
    Veröffentlicht: United States Cornell University 29.03.2023
    Veröffentlicht in ArXiv.org (29.03.2023)
    “… We propose to use deep-learning approaches to denoise MRS data without increasing the NSA. The study was conducted using data collected from the brain spectroscopy phantom and human subjects …”
    Volltext
    Journal Article
  19. 19

    SAE-based classification of school-aged children with autism spectrum disorders using functional magnetic resonance imaging von Xiao, Zhiyong, Wang, Canhua, Jia, Nan, Wu, Jianhua

    ISSN: 1380-7501, 1573-7721
    Veröffentlicht: New York Springer US 01.09.2018
    Veröffentlicht in Multimedia tools and applications (01.09.2018)
    “… subject’s dataset was decomposed into 30 independent components (IC). Secondly, some key ICs were selected and inputted into a stacked autoencoder (SAE …”
    Volltext
    Journal Article
  20. 20

    Classification and diagnosis of the parkinson disease by stacked autoencoder von Badem, Hasan, Caliskan, Abdullah, Basturk, Alper, Yuksel, Mehmet Emin

    Veröffentlicht: The Chamber of Turkish Electrical Engineers 01.12.2016
    “… In this paper we have introduced a new classification method of the parkinson disease which is based on the stacked autoencoder …”
    Volltext
    Tagungsbericht