Suchergebnisse - "Special Issue on Timely Advances of Deep Learning with applications AND Data-Driven Modeling~"

  1. 1

    Zero-day Android botnet detection using neural networks von Seraj, Saeed, Pimenidis, Elias, Trovati, Marcello, Polatidis, Nikolaos

    ISSN: 0941-0643, 1433-3058
    Veröffentlicht: London Springer London 01.06.2025
    Veröffentlicht in Neural computing & applications (01.06.2025)
    “… Android devices have evolved to offer a diverse array of services, spanning applications related to banking, business, health, and entertainment. The …”
    Volltext
    Journal Article
  2. 2

    Deep learning approaches and data augmentation for melanoma detection von Alzamel, Mai, Iliopoulos, Costas, Lim, Zara

    ISSN: 0941-0643, 1433-3058
    Veröffentlicht: London Springer London 01.06.2025
    Veröffentlicht in Neural computing & applications (01.06.2025)
    “… Skin cancer is one of the most common and dangerous forms of cancer. Diagnosis in the preliminary stages plays a significant role in determining the …”
    Volltext
    Journal Article
  3. 3

    Researching the detection of continuous gravitational waves based on signal processing and ensemble learning von Pintelas, Emmanuel, Livieris, Ioannis E., Pintelas, Panagiotis

    ISSN: 0941-0643, 1433-3058
    Veröffentlicht: London Springer London 01.06.2025
    Veröffentlicht in Neural computing & applications (01.06.2025)
    “… The detection of Gravitational Waves has introduced a new era for physics, astronomy, and astrophysics, unveiling new universe mysteries. Unfortunately, …”
    Volltext
    Journal Article
  4. 4

    CM-MLP: hybrid convmixer-deep MLP architecture for enhanced identification of corn and apple leaf diseases von Li, Li-Hua, Tanone, Radius

    ISSN: 0941-0643, 1433-3058
    Veröffentlicht: London Springer London 01.06.2025
    Veröffentlicht in Neural computing & applications (01.06.2025)
    “… This study aims to identify diseases impacting the agricultural sector, specifically focusing on corn and apple leaves. We propose a novel hybrid ConvMixer and …”
    Volltext
    Journal Article
  5. 5

    Assessment and deployment of a LSTM-based virtual sensor in an industrial process control loop von González-Herbón, Raúl, González-Mateos, Guzmán, Rodríguez-Ossorio, José R., Prada, Miguel A., Morán, Antonio, Alonso, Serafín, Fuertes, Juan J., Domínguez, Manuel

    ISSN: 0941-0643, 1433-3058
    Veröffentlicht: London Springer London 01.06.2025
    Veröffentlicht in Neural computing & applications (01.06.2025)
    “… Measurement of certain variables within the industrial sector remains a challenge due to the prohibitive costs of sensors, the intricate installation …”
    Volltext
    Journal Article
  6. 6

    Memetic algorithm-based optimization of hybrid forecasting systems for multivariate time series von Padilha, Guilherme Afonso Galindo, Jung, Jason J., de Mattos Neto, Paulo S. G.

    ISSN: 0941-0643, 1433-3058
    Veröffentlicht: London Springer London 01.06.2025
    Veröffentlicht in Neural computing & applications (01.06.2025)
    “… In recent decades, wind speed’s growing use in electricity generation has posed challenges due to its intermittent and fluctuating nature, hindering its …”
    Volltext
    Journal Article
  7. 7

    Residual connections improve click-through rate and conversion rate prediction performance von Biçici, Ergun

    ISSN: 0941-0643, 1433-3058
    Veröffentlicht: London Springer London 01.06.2025
    Veröffentlicht in Neural computing & applications (01.06.2025)
    “… The prediction of click-through rate (CTR) and conversion rate (CVR) are crucial tasks in online advertising and recommendation systems. As the learning models …”
    Volltext
    Journal Article
  8. 8

    A parameter-free nearest neighbor algorithm with reduced prediction time and improved performance through injected randomness von Singh, Manpreet, Chhabra, Jitender Kumar

    ISSN: 0941-0643, 1433-3058
    Veröffentlicht: London Springer London 01.06.2025
    Veröffentlicht in Neural computing & applications (01.06.2025)
    “… K-nearest neighbor is considered in top machine learning algorithms because of its effectiveness in pattern classification and simple implementation. However, …”
    Volltext
    Journal Article
  9. 9

    A fuzzy zeroing neural network and its application on dynamic Hill cipher von Jin, Jie, Lei, Xiaoyang, Chen, Chaoyang, Lu, Ming, Wu, Lianghong, Li, Zhijing

    ISSN: 0941-0643, 1433-3058
    Veröffentlicht: London Springer London 01.06.2025
    Veröffentlicht in Neural computing & applications (01.06.2025)
    “… Cryptography is the core of information security, and the Hill cipher is one of the most important methods for cryptography. For the purpose of the improvement …”
    Volltext
    Journal Article
  10. 10

    Exploring distribution-based approaches for out-of-distribution detection in deep learning models von Carvalho, Thiago, Vellasco, Marley, Amaral, José Franco

    ISSN: 0941-0643, 1433-3058
    Veröffentlicht: London Springer London 01.06.2025
    Veröffentlicht in Neural computing & applications (01.06.2025)
    “… Detecting unknown samples is a crucial task for deep learning applications, especially when considering open-set problems such as autonomous driving or disease …”
    Volltext
    Journal Article
  11. 11

    Feature analysis and ensemble-based fault detection techniques for nonlinear systems von Bolboacă, Roland, Haller, Piroska, Genge, Bela

    ISSN: 0941-0643, 1433-3058
    Veröffentlicht: London Springer London 01.06.2025
    Veröffentlicht in Neural computing & applications (01.06.2025)
    “… Machine learning approaches play a crucial role in nonlinear system modeling across diverse domains, finding applications in system monitoring, anomaly/fault …”
    Volltext
    Journal Article
  12. 12

    DACL+: domain-adapted contrastive learning for enhanced low-resource language representations in document clustering tasks von Zaikis, Dimitrios, Vlahavas, Ioannis

    ISSN: 0941-0643, 1433-3058
    Veröffentlicht: London Springer London 01.06.2025
    Veröffentlicht in Neural computing & applications (01.06.2025)
    “… Low-resource languages in natural language processing present unique challenges, marked by limited linguistic resources and sparse data. These challenges …”
    Volltext
    Journal Article
  13. 13

    Conditioned fully convolutional denoising autoencoder for multi-target NILM von García, Diego, Pérez, Daniel, Papapetrou, Panagiotis, Díaz, Ignacio, Cuadrado, Abel A., Enguita, José M., Domínguez, Manuel

    ISSN: 0941-0643, 1433-3058, 1433-3058
    Veröffentlicht: London Springer London 01.06.2025
    Veröffentlicht in Neural computing & applications (01.06.2025)
    “… Energy management requires reliable tools to support decisions aimed at optimising consumption. Advances in data-driven models provide techniques like …”
    Volltext
    Journal Article
  14. 14

    Novel wavelet-LSTM approach for time series prediction von Tamilselvi, C., Paul, Ranjit Kumar, Yeasin, Md, Paul, A. K.

    ISSN: 0941-0643, 1433-3058
    Veröffentlicht: London Springer London 01.06.2025
    Veröffentlicht in Neural computing & applications (01.06.2025)
    “… Time series prediction often faces challenges due to hidden patterns and noise within the data. This paper presented a novel algorithm that combines wavelet …”
    Volltext
    Journal Article
  15. 15

    A novel human action recognition using Grad-CAM visualization with gated recurrent units von Jayamohan, M., Yuvaraj, S.

    ISSN: 0941-0643, 1433-3058
    Veröffentlicht: London Springer London 01.06.2025
    Veröffentlicht in Neural computing & applications (01.06.2025)
    “… Human action recognition is a vital aspect of computer vision, with applications ranging from security systems to interactive technology. Our study presents a …”
    Volltext
    Journal Article
  16. 16

    An explainable approach for prediction of remaining useful life in turbofan condition monitoring von Mansourvar, Zahra, Jahangoshai Rezaee, Mustafa, Eshkevari, Milad

    ISSN: 0941-0643, 1433-3058
    Veröffentlicht: London Springer London 01.06.2025
    Veröffentlicht in Neural computing & applications (01.06.2025)
    “… The goal of this research is to present an approach that predicts the remaining useful life (RUL) estimation of a turbofan engine system within specific time …”
    Volltext
    Journal Article
  17. 17

    Dual Bi-LSTM-GRU based stance detection in tweets ordered classes von Poonam, Km, Ramakrishnudu, Tene

    ISSN: 0941-0643, 1433-3058
    Veröffentlicht: London Springer London 01.06.2025
    Veröffentlicht in Neural computing & applications (01.06.2025)
    “… There has been a tremendous increase in social media text-based opinions and reviews as a result of the quick development of social media. It emphasizes those …”
    Volltext
    Journal Article
  18. 18

    Artificial neural network to characterize spatially varying quantity through random field approach von Kumar, Pratyush

    ISSN: 0941-0643, 1433-3058
    Veröffentlicht: London Springer London 01.06.2025
    Veröffentlicht in Neural computing & applications (01.06.2025)
    “… Random field theory is commonly employed to characterize spatially varying quantities by decomposing them into deterministic and random components. The unknown …”
    Volltext
    Journal Article
  19. 19

    Forecasting stock market volatility using social media sentiment analysis von Saravanos, Christina, Kanavos, Andreas

    ISSN: 0941-0643, 1433-3058
    Veröffentlicht: London Springer London 01.06.2025
    Veröffentlicht in Neural computing & applications (01.06.2025)
    “… In the era where social media significantly influences public sentiment, platforms such as Twitter have become vital in predicting stock market trends. This …”
    Volltext
    Journal Article
  20. 20

    Stacked semi-supervised autoencoder-regularized RVFLNs for reliable prediction of molten iron quality in blast furnace von Zhou, Ping, Zhao, Peng, Ou, Zihui, Chai, Tianyou

    ISSN: 0941-0643, 1433-3058
    Veröffentlicht: London Springer London 01.06.2025
    Veröffentlicht in Neural computing & applications (01.06.2025)
    “… This paper proposes a novel stacked semi-supervised autoencoder-regularized random vector functional-link networks (RVFLNs) for reliable prediction of molten …”
    Volltext
    Journal Article