Suchergebnisse - "Semi-supervised variational autoencoder"
-
1
Customization of latent space in semi-supervised Variational AutoEncoder
ISSN: 0167-8655Veröffentlicht: 01.01.2024Veröffentlicht in Pattern recognition letters (01.01.2024)Volltext
Journal Article -
2
A mechanical fault diagnosis model with semi-supervised variational autoencoder based on long short-term memory network
ISSN: 0924-090X, 1573-269XVeröffentlicht: Dordrecht Springer Netherlands 01.01.2025Veröffentlicht in Nonlinear dynamics (01.01.2025)“… A mechanical fault diagnosis model with Semi-Supervised Variational Autoencoder based on Long Short-Term Memory network (LSTM-SSVAE …”
Volltext
Journal Article -
3
Developing semi-supervised variational autoencoder-generative adversarial network models to enhance quality prediction performance
ISSN: 0169-7439, 1873-3239Veröffentlicht: Elsevier B.V 15.10.2021Veröffentlicht in Chemometrics and intelligent laboratory systems (15.10.2021)“… Such discrepancy exists because of the time lag for obtaining quality data. This paper proposes semi-supervised variational autoencoder-generative adversarial network (S2-VAE/GAN …”
Volltext
Journal Article -
4
Semi-supervised Variational Autoencoder for WiFi Indoor Localization
ISSN: 2471-917XVeröffentlicht: IEEE 01.09.2019Veröffentlicht in International Conference on Indoor Positioning and Indoor Navigation (01.09.2019)“… We address the problem of indoor localization based on WiFi signal strengths. We develop a semi-supervised deep learning method able to train a prediction …”
Volltext
Tagungsbericht -
5
Semi-Supervised Variational Autoencoder for Cell Feature Extraction In Multiplexed Immunofluorescence Images
ISSN: 1945-8452Veröffentlicht: IEEE 27.05.2024Veröffentlicht in Proceedings (International Symposium on Biomedical Imaging) (27.05.2024)“… Advancements in digital imaging technologies have sparked increased interest in using multiplexed immunofluorescence (mIF) images to visualise and identify the …”
Volltext
Tagungsbericht -
6
Spatial and temporal downscaling schemes to reconstruct high-resolution GRACE data: A case study in the Tarim River Basin, Northwest China
ISSN: 0048-9697, 1879-1026, 1879-1026Veröffentlicht: Elsevier B.V 10.01.2024Veröffentlicht in The Science of the total environment (10.01.2024)“… of GRACE data effectively. In this study, we employ the semi-supervised variational autoencoder (SSVAER …”
Volltext
Journal Article -
7
Disentangling and integrating spatiotemporal features: Deep learning-based downscaling of groundwater storage anomalies from GRACE and GRACE-FO satellites
ISSN: 2214-5818, 2214-5818Veröffentlicht: Elsevier B.V 01.12.2025Veröffentlicht in Journal of hydrology. Regional studies (01.12.2025)“… It evaluates three downscaling models—semi-supervised variational autoencoder regression (SSVAER), geographically neural network weighted regression, and geographically and temporally neural network weighted regression …”
Volltext
Journal Article -
8
A Semi-Supervised Variational Autoencoder for Fault Detection of Low-Severity Inter-Turn Short-Circuit in PMSMs
ISSN: 2380-856XVeröffentlicht: IEEE 09.04.2025Veröffentlicht in Proceedings (IEEE Workshop on Electrical Machines Design, Control and Diagnosis (09.04.2025)“… This study proposes a semi-supervised Variational Autoencoder (VAE) with Long Short-Term Memory Networks for fault detection …”
Volltext
Tagungsbericht -
9
Semi-Supervised Variational Autoencoder for Survival Prediction
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 10.10.2019Veröffentlicht in arXiv.org (10.10.2019)“… In this paper we propose a semi-supervised variational autoencoder for classification of overall survival groups from tumor segmentation masks …”
Volltext
Paper -
10
Semi-supervised Variational Autoencoder for Regression: Application on Soft Sensors
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 09.12.2022Veröffentlicht in arXiv.org (09.12.2022)“… We present the development of a semi-supervised regression method using variational autoencoders (VAE), which is customized for use in soft sensing …”
Volltext
Paper -
11
Semi-supervised variational autoencoder for cell feature extraction in multiplexed immunofluorescence images
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 27.06.2024Veröffentlicht in arXiv.org (27.06.2024)“… Advancements in digital imaging technologies have sparked increased interest in using multiplexed immunofluorescence (mIF) images to visualise and identify the …”
Volltext
Paper -
12
A Joint Semi-Supervised Variational Autoencoder and Transfer Learning Model for Designing Molecular Transition Metal Complexes
ISSN: 2573-2293Veröffentlicht: Washington American Chemical Society 12.09.2023Veröffentlicht in ChemRxiv (12.09.2023)“… Deep generative models (DGMs) have shown great promise in the generation of organic molecules and inorganic materials with chemical sensible structures and …”
Volltext
Paper -
13
US Patent Issued to NAVER, NAVER LABS on June 28 for "Semi-supervised variational autoencoder for indoor localization" (French Inventors)
Veröffentlicht: Washington, D.C HT Digital Streams Limited 29.06.2022Veröffentlicht in US Fed News Service, Including US State News (29.06.2022)Volltext
Newsletter -
14
Exploring semi-supervised variational autoencoders for biomedical relation extraction
ISSN: 1046-2023, 1095-9130, 1095-9130Veröffentlicht: United States Elsevier Inc 15.08.2019Veröffentlicht in Methods (San Diego, Calif.) (15.08.2019)“… •A semi-supervised method is proposed based on variational autoencoders (VAE) for biomedical relation extraction.•Cutting-edge neural networks are used to …”
Volltext
Journal Article -
15
Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders
ISSN: 1553-7358, 1553-734X, 1553-7358Veröffentlicht: United States Public Library of Science 22.09.2021Veröffentlicht in PLoS computational biology (22.09.2021)“… Recent neuroscience studies demonstrate that a deeper understanding of brain function requires a deeper understanding of behavior. Detailed behavioral …”
Volltext
Journal Article -
16
Semi-Supervised Variational Autoencoders for Out-of-Distribution Generation
ISSN: 1099-4300, 1099-4300Veröffentlicht: Switzerland MDPI AG 14.12.2023Veröffentlicht in Entropy (Basel, Switzerland) (14.12.2023)“… Humans are able to quickly adapt to new situations, learn effectively with limited data, and create unique combinations of basic concepts. In contrast, …”
Volltext
Journal Article -
17
Semi-supervised Variational Autoencoders for Regression: Application to Soft Sensors
ISSN: 2378-363XVeröffentlicht: IEEE 18.07.2023Veröffentlicht in IEEE International Conference on Industrial Informatics (INDIN) (18.07.2023)“… We present the development of a semi-supervised regression method using variational autoencoders (VAE) for soft sensing of process quality variables. Recently, …”
Volltext
Tagungsbericht -
18
Supervised and semi-supervised probabilistic learning with deep neural networks for concurrent process-quality monitoring
ISSN: 0893-6080, 1879-2782, 1879-2782Veröffentlicht: United States Elsevier Ltd 01.04.2021Veröffentlicht in Neural networks (01.04.2021)“… Concurrent process-quality monitoring helps discover quality-relevant process anomalies and quality-irrelevant process anomalies. It especially works well in …”
Volltext
Journal Article -
19
A semi-supervised temporal modeling strategy integrating VAE and Wasserstein GAN under sparse sampling constraints
ISSN: 0959-1524Veröffentlicht: Elsevier Ltd 01.08.2025Veröffentlicht in Journal of process control (01.08.2025)“… Time series network models are widely applied in process industries for soft sensing, fault monitoring, and real-time optimization, serving as a powerful tool …”
Volltext
Journal Article -
20
Zero-shot learning for action recognition using synthesized features
ISSN: 0925-2312, 1872-8286Veröffentlicht: Elsevier B.V 21.05.2020Veröffentlicht in Neurocomputing (Amsterdam) (21.05.2020)“… ). A consequence of the proposed approach is a transductive setting using a semi-supervised variational autoencoder, where the unlabelled data from unseen classes are used to train the model …”
Volltext
Journal Article