Suchergebnisse - "Semi-supervised autoencoder"

  1. 1

    Improved semi-supervised autoencoder for deception detection von Fu, Hongliang, Lei, Peizhi, Tao, Huawei, Zhao, Li, Yang, Jing

    ISSN: 1932-6203, 1932-6203
    Veröffentlicht: United States Public Library of Science 08.10.2019
    Veröffentlicht in PloS one (08.10.2019)
    “… This model updates and optimizes the semi-supervised autoencoder and it consists of two layers of encoder and decoder, and a classifier …”
    Volltext
    Journal Article
  2. 2

    A semi-supervised autoencoder for autism disease diagnosis von Yin, Wutao, Li, Longhai, Wu, Fang-Xiang

    ISSN: 0925-2312, 1872-8286
    Veröffentlicht: Elsevier B.V 28.04.2022
    Veröffentlicht in Neurocomputing (Amsterdam) (28.04.2022)
    “… In this paper, we proposed a semi-supervised autoencoder (AE) for autism diagnosis using functional connectivity (FC …”
    Volltext
    Journal Article
  3. 3

    Semi-Supervised Autoencoder for Chemical Gas Classification with FTIR Spectrum von Jang, Hee-Deok, Kwon, Seokjoon, Nam, Hyunwoo, Chang, Dong Eui

    ISSN: 1424-8220, 1424-8220
    Veröffentlicht: Switzerland MDPI AG 03.06.2024
    Veröffentlicht in Sensors (Basel, Switzerland) (03.06.2024)
    “… In this paper, we propose a deep neural network utilizing a semi-supervised autoencoder (SSAE) for the classification of chemical gases based on FTIR spectra …”
    Volltext
    Journal Article
  4. 4

    A Semi-Supervised Autoencoder-Based Approach for Protein Function Prediction von Dhanuka, Richa, Tripathi, Anushree, Singh, Jyoti P.

    ISSN: 2168-2194, 2168-2208, 2168-2208
    Veröffentlicht: United States IEEE 01.10.2022
    Veröffentlicht in IEEE journal of biomedical and health informatics (01.10.2022)
    “… After the development of next-generation sequencing techniques, protein sequences are abundantly available. Determining the functional characteristics of these …”
    Volltext
    Journal Article
  5. 5

    scSSA: A clustering method for single cell RNA-seq data based on semi-supervised autoencoder von Zhao, Jian-Ping, Hou, Tong-Shuai, Su, Yansen, Zheng, Chun-Hou

    ISSN: 1046-2023, 1095-9130, 1095-9130
    Veröffentlicht: Elsevier Inc 01.12.2022
    Veröffentlicht in Methods (San Diego, Calif.) (01.12.2022)
    “… •In this study, We proposed to use semi-supervised autoencoder to reduce the dimension of data, because it makes good use of some existing label information …”
    Volltext
    Journal Article
  6. 6

    Stacked semi-supervised autoencoder-regularized RVFLNs for reliable prediction of molten iron quality in blast furnace von Zhou, Ping, Zhao, Peng, Ou, Zihui, Chai, Tianyou

    ISSN: 0941-0643, 1433-3058
    Veröffentlicht: London Springer London 01.06.2025
    Veröffentlicht in Neural computing & applications (01.06.2025)
    “… This paper proposes a novel stacked semi-supervised autoencoder-regularized random vector functional-link networks (RVFLNs …”
    Volltext
    Journal Article
  7. 7

    A semi-supervised autoencoder framework for joint generation and classification of breathing von Pastor-Serrano, Oscar, Lathouwers, Danny, Perkó, Zoltán

    ISSN: 0169-2607, 1872-7565, 1872-7565
    Veröffentlicht: Elsevier B.V 01.09.2021
    Veröffentlicht in Computer methods and programs in biomedicine (01.09.2021)
    “… •Models of breathing motion using 1D convolutional neural networks and probabilistic autoencoders.•A novel semi-supervised algorithm based on Adversarial …”
    Volltext
    Journal Article
  8. 8

    A Semi-Supervised Autoencoder With an Auxiliary Task (SAAT) for Power Transformer Fault Diagnosis Using Dissolved Gas Analysis von Kim, Sunuwe, Jo, Soo-Ho, Kim, Wongon, Park, Jongmin, Jeong, Jingyo, Han, Yeongmin, Kim, Daeil, Youn, Byeng Dong

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2020
    Veröffentlicht in IEEE access (2020)
    “… This paper proposes a semi-supervised autoencoder with an auxiliary task (SAAT) to extract a health feature space for power transformer fault diagnosis using dissolved gas analysis (DGA …”
    Volltext
    Journal Article
  9. 9

    Discriminant autoencoder for feature extraction in fault diagnosis von Luo, Xiaoyi, Li, Xianmin, Wang, Ziyang, Liang, Jun

    ISSN: 0169-7439, 1873-3239
    Veröffentlicht: Elsevier B.V 15.09.2019
    Veröffentlicht in Chemometrics and intelligent laboratory systems (15.09.2019)
    “… when handling ultimate discriminative task. In this paper, we propose a novel semi-supervised autoencoder, which is named as Discriminant Autoencoder …”
    Volltext
    Journal Article
  10. 10

    Representation Learning via Semi-Supervised Autoencoder for Multi-task Learning von Zhuang, Fuzhen, Luo, Dan, Jin, Xin, Xiong, Hui, Luo, Ping, He, Qing

    ISSN: 1550-4786
    Veröffentlicht: IEEE 01.11.2015
    “… Multi-task learning aims at learning multiple related but different tasks. In general, there are two ways for multi-task learning. One is to exploit the small …”
    Volltext
    Tagungsbericht Journal Article
  11. 11

    Ironmaking process modeling uncertainty quantification via conformal prediction based on random vector functional link networks von Zhou, Ping, Wen, Chaoyao, Zhao, Peng, Li, Mingjie

    ISSN: 0045-7906
    Veröffentlicht: Elsevier Ltd 01.04.2025
    Veröffentlicht in Computers & electrical engineering (01.04.2025)
    “… Firstly, to address the issue that shallow learning models have limited expression capabilities to describe complex nonlinear relationships, the dynamic attention mechanism and semi-supervised …”
    Volltext
    Journal Article
  12. 12

    AutoFuse: A Semi-supervised Autoencoder based Multi-Sensor Fusion Framework von Kumar, Kriti, Sahu, Saurabh, Majumdar, Angshul, Chandra, M Girish

    ISSN: 2161-4407
    Veröffentlicht: IEEE 18.07.2021
    “… The performance of existing methods for multisensor fusion are severely affected by the lack of significant amount of labeled data. In most practical …”
    Volltext
    Tagungsbericht
  13. 13

    Tree Health Assessment from UAV Images: Improving Object Detection and Classification Using Hard Negative Mining and Semi-Supervised Autoencoder von Jemaa, Hela, Bouachir, Wassim, Leblon, Brigitte, LaRocque, Armand, Haddadi, Ata, Bouguila, Nizar

    Veröffentlicht: IEEE 01.06.2023
    Veröffentlicht in 2023 20th Conference on Robots and Vision (CRV) (01.06.2023)
    “… Orchard tree inventory has been an essential step to obtain up-to-date information for effective tree treatments and crop insurance purposes. Inventorying …”
    Volltext
    Tagungsbericht
  14. 14

    Semi-Supervised Autoencoder: A Joint Approach of Representation and Classification von Haiyan, Wu, Haomin, Yang, Xueming, Li, Haijun, Ren

    ISSN: 2472-7555
    Veröffentlicht: IEEE 01.12.2015
    “… Recent years have witnessed the significant success of representation learning and deep learning in various prediction and recognition applications. Most of …”
    Volltext
    Tagungsbericht Journal Article
  15. 15

    A semi-supervised autoencoder framework for joint generation and classification of breathing von Pastor-Serrano, Oscar, Lathouwers, Danny, Perkó, Zoltán

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 25.03.2021
    Veröffentlicht in arXiv.org (25.03.2021)
    “… One of the main problems with biomedical signals is the limited amount of patient-specific data and the significant amount of time needed to record the …”
    Volltext
    Paper
  16. 16

    Mental workload recognition from EEG signals via semi-supervised autoencoders von Liu, Qi, Jiang, Xu, Wang, Huanjie, Chen, Jingjing

    ISSN: 1025-5842, 1476-8259, 1476-8259
    Veröffentlicht: England 04.07.2025
    “… To address this, we propose semi-supervised autoencoders that combine labeled and abundant unlabeled data …”
    Volltext
    Journal Article
  17. 17

    Explaining anomalies through semi-supervised Autoencoders von Angiulli, Fabrizio, Fassetti, Fabio, Ferragina, Luca, Nisticò, Simona

    ISSN: 2590-0056, 2590-0056
    Veröffentlicht: Elsevier Inc 01.12.2025
    Veröffentlicht in Array (New York) (01.12.2025)
    “… This work tackles the problem of designing explainable by design anomaly detectors, which provide intelligible explanations to abnormal behaviors in input data …”
    Volltext
    Journal Article
  18. 18

    Context-aware ranking refinement with attentive semi-supervised autoencoders von Xu, Bo, Lin, Hongfei, Lin, Yuan, Xu, Kan

    ISSN: 1432-7643, 1433-7479
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2022
    Veröffentlicht in Soft computing (Berlin, Germany) (01.12.2022)
    “… Based on the top-ranked feedback documents, we propose an attentive semi-supervised autoencoder to refine the ranked results using an optimized ranking-oriented reconstruction loss …”
    Volltext
    Journal Article
  19. 19

    AdImpute: An Imputation Method for Single-Cell RNA-Seq Data Based on Semi-Supervised Autoencoders von Xu, Li, Xu, Yin, Xue, Tong, Zhang, Xinyu, Li, Jin

    ISSN: 1664-8021, 1664-8021
    Veröffentlicht: Frontiers Media S.A 08.09.2021
    Veröffentlicht in Frontiers in genetics (08.09.2021)
    “… This paper presents AdImpute: an imputation method based on semi-supervised autoencoders. The method uses another imputation method …”
    Volltext
    Journal Article
  20. 20

    Energy Reconstruction with Semi-Supervised Autoencoders for Dual-Phase Time Projection Chambers von Li, Ivy, Higuera, Aarón, Liang, Shixiao, Qin, Juehang, Tunnell, Christopher

    ISSN: 2100-014X, 2101-6275, 2100-014X
    Veröffentlicht: Les Ulis EDP Sciences 01.01.2024
    Veröffentlicht in EPJ Web of conferences (01.01.2024)
    “… This paper presents a proof-of-concept semi-supervised autoencoder for the energy reconstruction of scattering particle interactions inside dualphase time projection chambers (TPCs), such as XENONnT …”
    Volltext
    Journal Article Tagungsbericht