Suchergebnisse - "Self‐consistency algorithm"

  • Treffer 1 - 8 von 8
Treffer weiter einschränken
  1. 1

    Semiparametric Regression Analysis of Interval-Censored Competing Risks Data von Mao, Lu, Lin, Dan-Yu, Zeng, Donglin

    ISSN: 0006-341X, 1541-0420, 1541-0420
    Veröffentlicht: England Wiley-Blackwell 01.09.2017
    Veröffentlicht in Biometrics (01.09.2017)
    “… Interval-censored competing risks data arise when each study subject may experience an event or failure from one of several causes and the failure time is not observed directly but rather is known …”
    Volltext
    Journal Article
  2. 2

    Semiparametric regression analysis of failure time data with dependent interval censoring von Chen, Chyong‐Mei, Shen, Pao‐sheng

    ISSN: 0277-6715, 1097-0258, 1097-0258
    Veröffentlicht: England Wiley Subscription Services, Inc 20.09.2017
    Veröffentlicht in Statistics in medicine (20.09.2017)
    “… Interval‐censored failure‐time data arise when subjects are examined or observed periodically such that the failure time of interest is not examined exactly but only known to be bracketed between two adjacent observation times …”
    Volltext
    Journal Article
  3. 3

    Missing Information Principle: A Unified Approach for General Truncated and Censored Survival Data Problems von Sun, Yifei, Qin, Jing, Huang, Chiung-Yu

    ISSN: 0883-4237
    Veröffentlicht: United States 01.05.2018
    Veröffentlicht in Statistical science (01.05.2018)
    “… It is well known that truncated survival data are subject to sampling bias, where the sampling weight depends on the underlying truncation time distribution …”
    Weitere Angaben
    Journal Article
  4. 4

    A Semiparametric Regression Cure Model for Interval-Censored Data von Liu, Hao, Shen, Yu

    ISSN: 0162-1459, 1537-274X
    Veröffentlicht: Alexandria, VA Taylor & Francis 01.09.2009
    Veröffentlicht in Journal of the American Statistical Association (01.09.2009)
    “… optimization techniques, yielding a self-consistency algorithm for the maximization step. We prove the strong consistency of the maximum likelihood estimators …”
    Volltext
    Journal Article
  5. 5

    Discrete‐Time Nonparametric Estimation for Semi‐Markov Models of Chain‐of‐Events Data Subject to Interval Censoring and Truncation von Sternberg, Maya R., Satten, Glen A.

    ISSN: 0006-341X, 1541-0420
    Veröffentlicht: Oxford, UK Blackwell Publishing Ltd 01.06.1999
    Veröffentlicht in Biometrics (01.06.1999)
    “… ‐of‐events data may also be subject to truncation when individuals can only be observed if a certain event in the chain (e.g., the final event) has occurred …”
    Volltext
    Journal Article
  6. 6

    Discrete-time nonparametric estimation for chain-of-events data subject to interval censoring and truncation von Sternberg, Maya Raquel

    ISBN: 0591339374, 9780591339376
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.1997
    “… In complex survival or longitudinal studies, interest often centers on estimating the time between a series or chain of events. In these cases, the data may be …”
    Volltext
    Dissertation
  7. 7

    A functional inference for multivariate current status data with mismeasured covariate von Wen, Chi-Chung, Huang, Yih-Huei, Wu, Yuh-Jenn

    ISSN: 1380-7870, 1572-9249, 1572-9249
    Veröffentlicht: New York Springer US 01.07.2015
    Veröffentlicht in Lifetime data analysis (01.07.2015)
    “… (hyperglycemia, hypertension, hyperlipidemia) are subject to current status censoring and the covariate self-reported body mass index may be subject to measurement error, we propose a functional inference method under the proportional odds model …”
    Volltext
    Journal Article
  8. 8

    Semiparametric transformation joint models for longitudinal covariates and interval-censored failure time von Chen, Chyong-Mei, Shen, Pao-sheng, Tseng, Yi-Kuan

    ISSN: 0167-9473, 1872-7352
    Veröffentlicht: Elsevier B.V 01.12.2018
    Veröffentlicht in Computational statistics & data analysis (01.12.2018)
    “… In many clinical trials and epidemiology research, subjects are followed-up repeatedly, and repeated measurements on longitudinal covariates as well as an observation on a possibly censored time …”
    Volltext
    Journal Article